
 
AFRL-RX-WP-TP-2010-4148 

 
 

DAMAGE MECHANICS MODEL DEVELOPMENT FOR 
MONOCRYSTALLINE SUPERALLOYS (PREPRINT) 
 
Mark A. Tschopp  
Mississippi State University  
 
 
 
 
 
 
 
FEBRUARY 2010 
 
 
 
 
 

Approved for public release; distribution unlimited.  
See additional restrictions described on inside pages  

 
STINFO COPY 

 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
MATERIALS AND MANUFACTURING DIRECTORATE 

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 
AIR FORCE MATERIEL COMMAND 

UNITED STATES AIR FORCE 



i 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it 
does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

February 2010 Technical Paper Preprint 01 August 2007 – 15 October 2009 
4.  TITLE AND SUBTITLE 

DAMAGE MECHANICS MODEL DEVELOPMENT FOR MONOCRYSTALLINE 
SUPERALLOYS (PREPRINT) 

5a.  CONTRACT NUMBER 
FA8650-07-D-5800-0004 

5b.  GRANT NUMBER  

5c.  PROGRAM ELEMENT NUMBER 
62102F 

6.  AUTHOR(S) 

Mark A. Tschopp 
5d.  PROJECT NUMBER 

4347 
5e.  TASK NUMBER 

RG 
5f.  WORK UNIT NUMBER 

  M02R1000 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION 

Mississippi State University 
Center for Advanced Vehicular Systems  
200 Research Boulevard 
Starkville, MS 39759 

     REPORT NUMBER

  

9.   SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Air Force Research Laboratory 

10.  SPONSORING/MONITORING  
       AGENCY ACRONYM(S) 

Materials and Manufacturing Directorate 
Wright-Patterson Air Force Base, OH 45433-7750 
Air Force Materiel Command 
United States Air Force 

AFRL/RXLMD 
11.  SPONSORING/MONITORING  
        AGENCY REPORT NUMBER(S) 
  AFRL-RX-WP-TP-2010-4148 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13.  SUPPLEMENTARY NOTES 
Technical paper for general release. PAO Case Number:  88ABW-2009-4645; Clearance Date: 04 Nov 2009.  
This work was funded in whole or in part by Department of the Air Force Contract FA8650-07-D-5800-0004. The U.S. 
Government has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide 
license to use, modify, reproduce, release, perform, display, or disclose the work by or on behalf of the U.S. 
Government. Paper contains color. 

14.  ABSTRACT 
This research in support of the Air Force Research Laboratory Materials and Manufacturing Directorate was conducted 
at Wright-Patterson AFB, Ohio from 1 August 2007 through 15 October 2009. The objective of this task was to develop 
methods to better predict damage initiation, such as cracking, in superalloys under engine representative conditions. This 
report details work that focuses on characterizing the material microstructure of single crystal nickel-based superalloys, 
which is important for damage initiation in these materials. Additionally, this report details work that involves in-situ 
mechanical testing of miniature specimens within the SEM as well as the setup of a miniature test specimen apparatus. 

15.  SUBJECT TERMS 
mechanics, single crystal Ni-based superalloys, microstructure, characterization, image processing, digital image 
correlation 

16.  SECURITY CLASSIFICATION OF: 17. LIMITATION  
OF ABSTRACT:

SAR 

18.  NUMBER 
OF PAGES 

    90 

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

         Christopher F. Woodward 
19b.  TELEPHONE NUMBER (Include Area Code) 

N/A 
 
 

Standard Form 298 (Rev. 8-98)   
Prescribed by ANSI Std. Z39-18 

 



 

 

1 

 

1 Contract Summary  

1.1 Objective 
 
Develop a method to predict damage initiation, such as cracking, in superalloys under engine 
representative conditions. 
 
1.2 Description of Work 
 
The proposed research program shall formulate and develop damage mechanics models for 
monocrystalline turbine blade materials under engine representative conditions.  Continuum 
mechanics models shall be developed to describe / predict cyclic deformation under a variety of 
isothermal and thermomechanical load spectra.  These models shall specifically account for the 
multiple levels of microstructural constituents in this class of materials and their evolution.  Later 
efforts shall focus on formulating criteria for the damage (crack) initiation in this class of 
materials. 
 
Experimental techniques shall be used to aid model formulation and validation.   Special 
emphasis shall be placed on characterizing materials that are extracted from new and retired 
turbine airfoils.  Techniques shall be developed to test small samples having a cross sectional 
area ranging from 1 to 4 mm2 with a gage length on the order of 10 mm.  This technique shall 
allow characterization of the actual monotonic and cyclic behavior of the material in the critical, 
part-specific microstructural condition and assess changes in that material behavior after 
microstructural modification due to high temperature service. Initially isothermal conditions up 
to 1200°C shall be simulated with a goal of developing thermomechanical and thermal gradient 
test capabilities.  Techniques shall be also developed to test actual turbine airfoil geometries, 
such as transpiration cooling holes and dead end ribs, to elucidate the interplay between the 
microstructure, its evolution and component geometry. 
 
2 Introduction 
 
High temperature mechanical behavior plays a crucial role in determining the total life of 
fracture critical turbine engine components.  The Air Force Research Laboratory‘s Engine Rotor 
Life Extension and Materials Damage Prognosis programs have examined life-limiting factors in 
fatigue in an effort to extend the lives of service components.  Various material-specific 
mechanisms contribute to fatigue variability and high temperature mechanical behavior.  For 
example, in fatigue, fatigue variability has been associated with competing failure mechanisms in 
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Ti-6246, René 88DT and IN-100.  The ability to predict high temperature mechanical behavior, 
fatigue variability, and the minimum life of critical components significantly affects the 
sustainability of an aircraft fleet. 
 
To accurately predict high temperature mechanical behavior, it is vital to understand what the 
fatigue-critical microstructural features are and exactly how these may couple with loads and 
temperatures to nucleate damage in these critical components.  This report focuses on two 
research areas critical to better understanding high temperature mechanical behavior in single 
crystal nickel-based superalloys, which are commonly used materials for turbine blades that lie 
within the hot section (1200°C) of the engine.  The first research area detailed in this report is the 
high temperature mechanical properties (creep, fatigue) of single crystal nickel-based 
superalloys.  The second research area detailed in this report is the detection and characterization 
of microstructural features that may be important for models that aim to describe how damage 
progresses in single crystal Ni-based superalloys.  The ability to use the information stemming 
from these research areas in concurrent multiscale damage mechanics models may greatly 
enhance the engineering of single crystal Ni-based superalloys.   
 
3 Results 
 
This section contains multiple journal papers that comprise completed elements that relate to the 
mechanics of nickel-based superalloys and the characterization of key microstructural features 
that relate to high temperature creep and fatigue of these superalloys.  Section 3.1 discusses 
digital image correlation of laser-ablated platinum nanoparticles on the surface of a 
polycrystalline metal (nickel-based superalloy René 88DT), which was used to obtain the local 
strain behavior from an in situ scanning electron microscope tensile experiment at room 
temperature.  Section 3.2 discusses a methodology for automated detection and 3D 
characterization of eutectic particles taken from serial images of a production turbine blade made 
of a heat-treated single crystal Ni-based superalloy.  Section 3.3 discusses a methodology for 
automated detection and 3D characterization of dendrite cores from images taken from slices of a 
production turbine blade made of a heat-treated single crystal Ni-based superalloy.  The dendrite 
core locations are detected using an automated segmentation technique that exploits the four-fold 
symmetry of the dendrites when viewed down the <001> growth direction.  Section 3.4 discusses 
a computational methodology for automated detection of secondary and tertiary γ‘ precipitates in 
EFTEM images.  Section 3.5 discusses a technique used to assess the key microstructural length 
scales based on synthetic microstructures of varying area fraction, orientation, and aspect ratio.  
Last, Section 3.6 briefly discusses the setup of a tensile apparatus capable of testing miniature 
specimens at temperatures up to 1200°C.   
 
These papers would not have come together if not for the help of numerous co-authors.  I would 
like to acknowledge the following co-authors (their subsection contribution in parentheses): B.B. 
Bartha (3.1), S. Fairchild (3.1), W.J. Porter (3.1), P.T. Murray (3.1), M.A. Groeber (3.2, 3.3), J.P. 
Simmons (3.2, 3.3), A.H. Rosenberger (3.2, 3.3, 3.6), C. Woodward (3.2, 3.3), J.S. Tiley (3.4), 
G.B. Viswanathan (3.4), G.B. Wilks (3.5), and J.E. Spowart (3.5). 
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3.1.   Microstructure-dependent local strain behavior in polycrystals through 
in situ scanning electron microscope tensile experiments 
 
This subsection details digital image correlation of laser-ablated platinum nanoparticles on the 
surface of a polycrystalline metal (nickel-based superalloy René 88DT), which was used to 
obtain the local strain behavior from an in situ scanning electron microscope tensile experiment 
at room temperature.  By fusing this information with crystallographic orientations from EBSD, 
a subsequent analysis shows that the average maximum shear strain tends to increase with 
increasing Schmid factor.  Additionally, the range of the extreme values for the maximum shear 
strain also increases closer to the grain boundary, signifying that grain boundaries and triple 
junctions accumulate plasticity at strains just beyond yield in polycrystalline René 88DT.  In situ 
experiments illuminating microstructure-property relationships of this ilk may be important for 
understanding damage nucleation in polycrystalline metals at high temperatures.  
 
Fatigue variability plays a crucial role in determining the total life of fracture critical turbine 
engine components.  The Air Force Research Laboratory‘s Engine Rotor Life Extension and 
Materials Damage Prognosis programs have examined life-limiting factors in an effort to extend 
the lives of service components.  Various material-specific mechanisms contribute to fatigue 
variability (1).  For example, fatigue variability has been associated with competing failure 
mechanisms in Ti-6246, René 88DT and IN-100 (2-4).  The ability to predict fatigue variability 
and the minimum life of critical components significantly affects the sustainability of an aircraft 
fleet. 

To accurately predict fatigue variability, it is vital to understand what the fatigue-critical 
microstructural features are and exactly how these may couple with loads and temperatures to 
nucleate damage in these critical components.  It is a commonly held notion that damage 
nucleates in locations of large strain concentrations or where substantial inelastic deformation 
exists.  Digital image correlation (DIC) is a technique often used to investigate how strain 
localizes around part geometric features, such as cracks, holes, and notches.  Recently, this 
technique has been applied at increasingly smaller scales, i.e., in situ scanning electron 
microscope (SEM) (5-8) and atomic force microscope (9-10) studies are now on the order of the 
underlying microstructural features.  Similar in situ studies are also used to understand how 
microstructure evolves with deformation (e.g., in Ti alloys 11-12).  The ability to combine these 
studies and understand how specific microstructure features evolve and couple with local strains 
can greatly enhance our ability to predict fatigue and, perhaps, engineer better materials for 
fatigue. 

In this subsection, we present an in situ SEM technique that can be used to obtain the local 
deformation behavior of polycrystalline materials at room and elevated temperatures.  René 
88DT, a forged polycrystalline Ni-based superalloy used in aircraft engine components, was 
chosen as a novel material for this work.  The results correlate the local strain behavior obtained 
from DIC to grain boundaries and grain orientations using electron backscatter diffraction 
(EBSD).  Ultimately, the objective of this research is to understand how the microstructural 
variability of polycrystalline materials influences fatigue variability.  This subsection highlights a 
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novel methodology that couples local strains with crystallographic orientations to analyze 
microstructural factors that may influence damage nucleation and fatigue. 

The experimental setup consisted of a screw-driven 1000 lb capacity tensile stage (Ernest F. 
Fullam, Inc.) placed inside a Quanta 600 FEG SEM.  The tensile specimen was a flat dog bone-
shaped specimen with gage dimensions of 2.794 mm wide x 0.720 mm thick x 10 mm long.   

Digital image correlation often uses a speckle pattern to track displacements.  Here, the specimen 
surface was coated with Pt nanoparticles (Figure 3.1.1) using a laser ablation process termed 
through thin film ablation (TTFA) (13).  The specimen surfaces were mechanically polished to 
a 1 m finish prior to deposition; a clean polished surface is essential for optimal imaging and 
deposition.  The TTFA technique used a 10 nm Pt thin film deposited onto a fused silica plate 
transparent to the laser wavelength (wavelength = 248 nm, energy density = 0.5 J/cm2).  The 
chamber was filled with Ar at a pressure of 5 torr.  The laser irradiates the Pt thin film from the 
backside, propelling Pt nanoparticles at the intended target, i.e., in this case, the tensile specimen.  
The high density of the Pt nanoparticles compared to the René 88DT provided sufficient contrast 
in the secondary electron images for DIC.  The TTFA nanoparticles are deposited in a random 
speckle pattern that allows sub-pixel resolution of displacement.  Platinum nanoparticles enable 
DIC at higher temperatures than Au patterns (e.g., Ref. 5), i.e., into the temperature range where 
nickel-based superalloys are typically used.  Similar nanoparticle speckle patterns have also been 
applied to surfaces through spin-casting (14-15) or lithography techniques (16). 

 

 

Figure 3.1.1.  BSE images of nanoparticles on the surface of the tensile 
specimen. 
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The specimen was then mounted into the tensile stage grip fixture and preloaded to help align the 
specimen.  Both secondary electron (SE) and backscatter electron (BSE) images were collected 
at 16 bit depth at a pixel resolution of 4096 by 3773 pixels.  The SE images were used for digital 
image correlation while the BSE images provided sufficient detail for aligning the in-situ images 
with post-processed EBSD images.  At each load step, the stage controller was turned off while 
acquiring the images to minimize any potential distortion effects due to the motor operating the 
stage.  Each image was focused by adjusting the stage fixture to keep the same working distance; 
this minimizes any additional artifacts due to focusing with the beam only. 

The tensile specimen was loaded in 12 steps to 1381 MPa (yield regime) with larger (smaller) 
step sizes in the elastic (plastic) regime.  The present analysis was conducted at room 
temperature.  After unloading the specimen, fiducial marks were applied through 
nanoindentation to identify the DIC region and the Pt nanoparticles were removed from the 
surface through a fine polishing step.  Then, EBSD was used to measure the crystallographic 
orientations of the underlying microstructure.  Digital Image Correlation was performed on each 
image with ViC-2D (Correlated Solutions, Inc.) to calculate the displacement field for each load 
increment.  The image at the 0 MPa unloaded condition was used as a reference image for the 
displacement calculation.  A subset size of 99 pixels was used for each calculation with a 5 pixel 
step size and cubic B-spline interpolation.  The displacement maps were then converted to 
maximum shear strain maps for the remainder of the analysis. 

Figure 3.1.2 shows the result of digital image correlation for a nominal stress of 1280 MPa.  Fig. 
2(a) shows the reference image, while Fig. 2(b) shows the deformed image with evidence of slip 
bands in some grains; the loading axis is horizontal.  The digital image correlation software uses 
Fourier transforms of multiple subsets of these images to calculate the sub-pixel displacements 
and strains, as shown in Fig. 2(c).  The average strain in the loading axis direction for the 274 
m by 230 m region of interest is 0.02.  The high strain concentrations are localized in bands 
oriented approximately 45 degrees from the tensile direction, as would be expected.  The bands 
present in Fig. 2(c) do not necessarily correlate with the observed slip bands in Fig. 2(b); grain 
boundaries also play an important role in the high local maximum shear strain bands. 
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Figure 3.1.2.  (a,b) SE images of René 88DT with nanoparticles (bright spots throughout image) 
at no load and after yield. (c) Digital image correlation was used to generate the maximum shear 
strains within the 274 m by 230 m region of interest. 

Further analysis requires the maximum shear strain maps to overlap the crystallographic 
information obtained from the EBSD scan.  By aligning the inverse pole figure in Figure 3.1.3(a) 
with the BSE image in Figure 3.1.3(b), the strain maps can be correlated with information 
obtained from crystal orientations, e.g., Schmid factor, Taylor factor, etc.  The image quality 
(IQ) map (Fig. 3c) is a quantitative measure of the fit of the Kikuchi pattern from the EBSD 
scan.  The grain boundaries have a lower IQ value than the grain interiors, which allows for a 
better alignment with the BSE image.  The IQ map image is then aligned with the BSE image 
through rotation, translation, and rescaling, as shown in Figure 3.1.3(d).  However, the pixels and 
their spacing may still be different between the two datasets.  Therefore, a nearest neighbor 
interpolation is used to match the pixels in the IQ map with the pixels in the BSE image.  All 
subsequent analyses are related to correlating the shear strain behavior in Figure 3.1.2 with 
quantitative information relating to the crystallographic grain orientation. 
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Figure 3.1.3.  Image alignment process: (a) Inverse pole figure showing crystal orientations from 
EBSD scan, (b) BSE image of René 88DT prior to deformation, (c) IQ map of microstructure, 
and (d) aligned images. 

Figure 3.1.4 shows the correlation between the Schmid factor and the maximum shear strain.  
Each data point represents 1 pixel from the strain map of Figure 3.1.2, i.e., over 460,000 data 
points total.  Figure 3.1.4(a) shows the distribution of Schmid factors within the René 88DT 
grain structure over the same area as Fig. 2(c).  The Schmid factor resolves the tensile stress onto 
the {111} slip plane in the <110> slip direction, i.e., a higher Schmid factor should coincide with 
a higher shear stress in the direction of slip.  Fig. 4(b) shows the relation between the maximum 
shear strain and the Schmid factor.  At low Schmid factors, the range of the extreme values of 
maximum shear strain (i.e., the low and high values) is not as large as for higher Schmid factors.  
There appears to be no decisive relationship between the Schmid factor and extreme values of 
the maximum shear strain, since high maximum shear strains are observed in regions with 
Schmid factors of approximately 0.35.  The high extreme values of maximum shear strain are of 
particular interest because they indicate regions of damage accumulation, which is important 
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under fatigue conditions.  The average maximum shear strain also shows a net increasing trend in 
maximum shear strain with increasing Schmid factor, although this trend is minimal.   

 

Figure 3.1.4.  (a) Schmid factor map of the region of interest and (b) maximum shear strain vs. 
Schmid factor at a nominal stress of 1280 MPa. 

The grain boundary network may also be associated with the localization in strain within the 
region of interest.  Figure 3.1.5 shows the correlation between the distance from the grain 
boundary and the maximum shear strain.  The grain boundary pixels were identified by 
determining if there were two or more grains present in adjacent pixels (4-neighborhood).  Fig. 
5(a) shows the maximum shear strain map with the grain boundary pixels in black.  The distance 
from the boundary was calculated using a Euclidean distance transform.  Interestingly, Fig. 5(b) 
shows that the upper (lower) extreme values for maximum shear strain decreases (increases) as 
the distance from the grain boundary increases.  This indicates that the grain boundary has a 
greater propensity to accommodate strain than the grain interiors --- both lower and higher shear 
strains.  The strain behavior at large distances (approximately 8 microns and greater) from the 
boundary is related to the few large grains within the region of interest.  The strain behavior at 
intermediate distances from the GB encompasses a large number of grains, yet the strain range is 
not as large as at the boundary.  The average shear strain behavior is equivalent for the first 6 m 
from the boundary; the deviation at larger distances is affected by the few large grains.  These 
results indicate that shear strains are much more likely to localize at high values at the grain 
boundary regions rather than the grain interiors.    
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Figure 3.1.5.  (a) Maximum shear strain map with the grain boundaries overlaid and (b) 
maximum shear strain with respect to distance from grain boundary. 

These trends may not appear as strong because the strain localization after yield is not merely a 
function of the crystallographic orientation of the underlying lattice, but may also depend on the 
grain boundary structure, triple junctions, the grain size, and the neighboring grains, i.e., due to 
multiple factor interactions.  In this analysis, the trends apparent in Figs. 4 and 5 indicate that the 
factors examined in this subsection may be significant, though.  Additionally, the maximum 
shear strains and grain orientations obtained are also a two-dimensional representation of a three-
dimensional problem, which may further complicate correlating strains with the underlying 
microstructure.  Ideally, having a specimen thickness on the order of the grain size may better 
elucidate some of these trends.  In this work, however, the properties of interest correspond to 
Rene 88DT grain sizes analyzed.  Last, OIM maps after deformation were used to supply the 
grain orientation information.  Future work focuses on modifying this methodology to obtain 
EBSD crystallographic orientation before the in situ tensile experiment as well.  This is 
important for high uniaxial strains, which could lead to grain rotation and grain boundary sliding 
at high temperatures.     

In summary, this subsection presents a novel methodology for preparing tensile specimens for in 
situ SEM digital image correlation through a laser ablation process, through thin film ablation.  
By combining deformation strain maps from DIC with EBSD data, the correlation between the 
maximum shear strain and a number of microstructure-dependent parameters can be ascertained, 
e.g., Schmid factor (Fig. 4) and distance from grain boundary (Fig. 5) in this analysis.  On 
average, the maximum shear strain tends to increase with increasing Schmid factor.  The range 
of the extreme values for the maximum shear strain also increases closer to the grain boundary, 
signifying that grain boundaries and triple junctions accumulate plasticity at strains just beyond 
yield within polycrystalline René 88DT.   
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This analysis shows that the strain localization in polycrystalline superalloys, which is important 
to plasticity, fatigue, and fracture, is a combination of a number of factors related to grain 
orientation and the grain boundary network.  This will require coupling between further 
experiments and computational approaches to fully understand, and is vital to understanding how 
damage nucleates in fatigue-critical polycrystalline components.  Furthermore, results of this ilk 
may also be used to estimate constitutive parameters with inverse computational methods based 
on full-field measurements (cf. 17-18).  Future work aims to extend this approach to higher 
temperatures. 
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3.2.   Automated Detection and 3D Characterization of Eutectic Particles in 
Single Crystal Ni-Based Superalloys 

Serial sectioning methods continue to produce an abundant amount of image data used to 
quantify the three-dimensional nature of material microstructures.  In this section, we discuss a 
methodology for automated detection and 3D characterization of eutectic particles taken from 
serial images of a production turbine blade made of a heat-treated single crystal Ni-based 
superalloy.  This method includes two important steps for unassisted eutectic particle 
characterization: automated identification of the seed point within each particle and a region 
growing algorithm with an automated stop point.  Once detected, the segmented eutectic 
particles are used to calculate microstructural statistics for characterizing and reconstructing 
statistically-representative synthetic microstructures for single crystal Ni-based superalloys.  The 
significance of this work is its ability to automate characterization for analyzing the 3D nature of 
eutectic particles. 

INTRODUCTION 
 
Knowledge of the three-dimensional (3D) nature of particles may be important for ascertaining 
certain properties in many material systems.  Serial sectioning is often a labor-intensive, but 
effective, tool that is used to provide datasets essential for characterizing three-dimensional (3D) 
microstructure.  The ability to automate the removal of material at controlled rates through either 
mechanical polishing [1-3], microtome milling, or focused ion beam milling [4-8], has enabled 
researchers to obtain 3D microstructure datasets at a range of length scales.  To further enhance 
the speed of collecting these datasets, the method of removal is often coupled with the imaging 
instrument, e.g., mechanical polishing with optical imaging [1], or FIB with EBSD imaging [4-
7].  This technique has helped to produce the 3D microstructure in a number of materials, e.g., 
 

 the polycrystalline grain structure in Ni-based superalloys (IN100) [5] 
 the dendritic structure in single crystal nickel-based superalloys [9, 10], Al-Cu alloys 

[11, 12], and Pb-Sn alloys [13, 14] 
 reinforcement particle for particle-reinforced metal-matrix composites [15, 16] 
 microstructure (cementite, ferrite, austenite, martensite, and pearlite) colonies in alloy 

steels [17-20] 
 the structure of pitch-based carbon foams [21] 
 the γ-γ‘ microstructure in Ni alloys [4, 22, 23] 
 intermetallic particles in Sn-rich solder [24] 
 pore morphology in die-cast magnesium alloys [25] 

 
In this work, the 3D structure of eutectic particles in single crystal nickel-based superalloy 
turbine blade casting is investigated.  Large montage images from the airfoil section were used to 
obtain the 3D structure of eutectic particles.  Parallel work concentrates on identifying dendrite 
cores to reconstruct the three-dimensional dendritic structure of the blade [26].  Identifying both 
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of these features is important for obtaining a quantitative description of the structure of single 
crystal nickel-based superalloys used in turbine blade applications.   

Successful efforts to automate serial sectioning techniques to produce large sets of 
microstructure images [1, 2, 9, 10] have led to overwhelming amounts of data resulting in a 
bottleneck at the image processing and analysis step.  This statement is particularly true for the 
image segmentation step in complex multi-component microstructures, e.g., the eutectic 
particles, pores, carbides, and dendrites in the single crystal microstructure investigated here.  
Manual identification of the large number of eutectic particles and pores in single crystal nickel-
based superalloys is impractical.  Automating the identification and reconstruction of 
microstructural features will be required for this approach to reach its full potential.  Reliable 
assessment of microstructural statistics will require processing large datasets. 

The rapid growth in 3D microstructure characterization is driven by the requirements of 
integrated computational models that link processing to properties and performance.  From a 
properties perspective, 3D microstructure statistics can enhance the predictive capability of finite 
element models that take microstructure into account.  Reconstructing the microstructure at the 
relevant length scale(s) for high temperature mechanical behavior can be used in concurrent 
multi-scale FE models that account for material microstructure.  For instance, Ghosh and 
coworkers [27] have developed a concurrent multi-level model whereby multiple levels of 
refinement are used to simulate crack growth behavior.  The level zero continuum approximation 
corresponds to a constitutive response consistent with a homogenization of microstructure and 
properties over the entire domain of the turbine blade.  Level one would capture the variation in 
response produced by crystal rotations of different dendritic domains, and the density of primary 
dendrites (primary dendrite arm spacing).  Finer details in the microstructure such as the 
secondary arm spacing, eutectic phase, carbide and void distribution would be captured in a level 
two representation.  One objective of this research is to measure the statistics necessary to 
generate statistically representative volume elements for inclusion in these models. 

In this subsection, we present an automated technique for detecting eutectic particles in optical 
microscopy montages on serial-sections through a turbine blade airfoil.  First, the acquisition 
process for these images is described.  Second, the technique used to identify the eutectic 
particles is described, which includes identifying seed points for a region growing algorithm with 
an automated stopping criterion.  Third, this automated technique is used for a series of sixteen 
slices from a blade to measure a set of microstructure descriptor statistics.  Ultimately, the 
objective of this research is to automate the technique used for identifying eutectic particles and 
to calculate the microstructure statistics.     

IMAGE ACQUISITION: 
 
Figure 3.2.1 shows an etched optical image montage for a slice perpendicular to the nominal 
growth direction of a single crystal nickel-based superalloy (PWA 1484) turbine blade.  The 
turbine blade was filet cut through the interior cooling passage, i.e., the lower blade geometry 
reflects ribs in the interior cooling passages and the upper blade geometry is the exterior surface.  
Further details of the experimental method for obtaining the images are given in Groeber et al. 
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[28].  The pixel spacing is approximately 2 μm per pixel.  The red box delineates a 3000 x 3000 
pixel (~36 mm2) subset of the turbine blade that is used for eutectic particle statistics later.   

There are several problems associated with manual or standard image processing methods to 
segment eutectic particles from these images.   

1. The large size (17544 x 4244 pixels, i.e., 35 mm x 8 mm) of the images and the large 
number of eutectic particles make it difficult to segment eutectic particles manually.   

2. The etchant used to highlight dendrite cores may etch material at different rates within 
the same slice, varying the contrast in intensity for different areas.  Occasionally, the 
image contrast may change slightly from stitching images together for the image montage 
as well.  Standard methods for leveling the contrast within the blade region to correct this 
do not account for the mount material, which would incorrectly skew intensity values 
near the edges of the blade. 

3. Simple threshold methods for segmenting eutectic particles do not work well.  First, 
segmenting the particles with a global threshold parameter applied to the entire image is 
adversely affected by the intensity contrast differences due to the etchant.  Second, the 
dendrites (in particular, the dendrite core regions) have similar intensities to the eutectic 
particles of interest.    

 
Therefore, an automated technique for processing these large images is required to address these 
problems.  A standard region growing technique was augmented to segment eutectic particles in 
a single crystal nickel-based superalloy microstructure in an automated manner.   

 

 

Figure 3.2.1. This image montage shows the microstructure of a cross-section of a single crystal 
nickel-based superalloy turbine blade embedded in mount material (in black). 
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AUTOMATED REGION GROWING TECHNIQUE FOR EUTECTIC PARTICLE 
IDENTIFICATION  
 
A typical region growing technique works by selecting a seed point within a region (e.g., a 
precipitate), growing the region by iteratively adding the neighboring pixel with the closest 
intensity value to the average intensity of the region, and stopping growth of the region when the 
neighboring pixel with the closest intensity value exceeds a threshold parameter for the intensity 
difference.  This standard method can be used to segment the eutectic particles.  The difficulty 
with this technique is that it requires the user to specify the seed point from which to start 
growing and it requires a user-specified threshold parameter, which may be different for different 
particles.  The following pages describe how these steps were augmented to automate the 
eutectic particle detection.   
 
Seed Point Detection 

The first step required for automating the region growing technique to detect eutectic particles is 
to identify seed points within each eutectic particle.  Figure 3.2.2 shows images at various stages 
of the seed point detection algorithm.  Figure 3.2.2(a) shows the microstructure a 500-μm by 
500-μm etched optical image taken from a turbine blade slice.  Starting with this microstructure 
image, detecting the seed points requires a series of image processing steps, i.e.,  

1. An edge detection filter, the Sobel filter, is cross-correlated with the original image.  
The absolute value of the resulting image shows the magnitude of the intensity 
gradients for each pixel in both the vertical (Figure 3.2.2(b)) and the horizontal 
directions (Figure 3.2.2(c)). 

2. These two images are then multiplied (Aij = Bij*Cij) to produce an image (Figure 
3.2.2(d)) that further accentuates the eutectic particle boundary, while minimizing 
intensity gradients due to noise in the dendritic or interdendritic areas.  At this point, 
the image‘s intensity is a double integer and was rescaled to an 8-bit image. 

3. A threshold parameter of 50 was used to identify particle edges with high intensity 
gradients (Figure 3.2.2(e)).  The boundaries of the eutectic particles are incomplete, 
showing the difficulty of methods that attempt to segment the boundary for 
identifying particles.   

4. For each segmented boundary pixel, the neighboring pixel (8 pixel connectivity) with 
the highest intensity value is selected as a seed point for region growing.  Figure 
3.2.2(f) shows the original image with seed points in red.  Notice that this technique 
defines at least one seed point within each eutectic particle and multiple seed points in 
the larger particles. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 3.2.2. This series of images illustrates the various steps required in the seed point 
detection algorithm. (a) Original image, (b,c) Sobel edge dection filter in vertical direction (b) 
and horizontal (c) directions, (d) multiplication of Sobel edge detection images (b, c), (e) 
segmented seed points using threshold parameter of 50, and (f) seed point locations (red) 
superimposed on the original image. 

 

This technique was repeated on the 3000 x 3000 pixel microstructural regions with good results.  
The threshold parameter for generating the particle edges can be optimized to minimize the 
amount of time devoted to the manual identification of incorrectly identified particles and 
undetected eutectic particles.  In this work, the threshold parameter of 50 minimized the 
incorrectly identified particles associated with scratches and dendritic areas, leaving the user to 
mainly identify seed points for undetected eutectic particles manually (<10% of identified 
particles).   

Automated stopping feature 
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Second, to eliminate the necessity of a user-specified threshold parameter for a stopping 
criterion, we automated the stopping feature of a typical region growing algorithm.  To 
accomplish this, the threshold parameter for the region growing algorithm is incrementally 
increased and a penalty function is calculated for each threshold parameter.  In this case, the 
penalty function is the difference between the mean intensity of the region and the mean 
intensity of the neighboring pixels just outside the region.  The threshold parameter that 
optimizes the intensity difference is the critical threshold parameter for segmenting the eutectic 
particle.  The advantage of this method over a global user-specified threshold parameter is that 
this method will change the threshold parameter to maximize the intensity difference in each 
particle.  Therefore, this method can account for any changes in intensity with the eutectic 
particles and the surrounding interdendritic area. 

Figure 3.2.3(a) shows the region pixel size as a function of the ‗stopping‘ threshold parameter 
chosen for a seed point along a large eutectic particle.  For small threshold parameters, the region 
is contained within the boundary region of the eutectic particle as shown in the accompanying 
image.  The abrupt increase in the region size at an intensity threshold of 54 corresponds to the 
region growing into the eutectic particle.  After this point, increases in the intensity threshold 
result in only minor increases to the region size.  This is the difficulty with choosing a threshold 
parameter based on visual observation.  With only minimal changes to the region size for higher 
threshold parameters, at what threshold is the particle accurately segmented? 

  

(a) (b) 

Figure 3.2.3. (a) Plot showing the region size as a function of the stopping threshold value.  (b) 
Plot showing the mean intensity for the region, the area just outside the region, and the intensity 
difference between the two areas as a function of the stopping threshold value.  The arrow and 
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image correspond to the region with the maximum intensity difference, which is used for the 
automated region growing stopping criterion.   

To answer this question, Figure 3.2.3(b) shows the mean intensity of the region, the mean 
intensity of the neighboring pixels, and the intensity difference between these two areas as a 
function of the threshold parameter for the same eutectic particle.  Recall that the maximum 
intensity difference (red) is used here for the automated stopping criterion for the region growing 
technique.  For small threshold parameters, the seed point‘s intensity is much lower than the 
remainder of the eutectic particle.  This is due to selecting a seed point near the boundary of the 
particle, instead of at the interior of the particle.  At this point, the intensity of the area outside 
the region is approximately equivalent to the intensity of the area inside the region, i.e., many of 
the pixels outside the region also lie within the eutectic particle.  Again, the abrupt increase in 
the intensity difference at an intensity threshold of 54 is due to the region growing into the 
eutectic particle, as shown in Figure 3.2.3(a).  The optimum segmentation of the eutectic particle 
is defined as the threshold parameter that yields the maximum intensity difference between these 
two areas, as denoted by the red arrow.  The routine quantitatively identifies the eutectic particle 
boundary in an automated manner based on the intensity gradient across the interface.  The 
image in Figure 3.2.3(b) shows the original image with the perimeter pixels for the segmented 
eutectic particle in red.  Visual observation of various microstructural areas throughout the 
turbine blade (e.g., Figure 3.2.4) confirms that the automated segmentation is satisfactory. 

 

Figure 3.2.4. The perimeter of the segmented eutectic particles (red) is superimposed on the 
original image to show the visual agreement of the region growing algorithm. 
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While the objective of this work was to entirely automate the eutectic particle detection, there 
were still complications due to the mount material and scratches produced during the polishing 
process.  Both the mount material and scratches can also cause problems with identifying seed 
points for the region growing technique.  To remove the influence of the mount, the mount 
region was segmented manually using a combination of operations: thresholds, size filters, and 
morphological open/close operations.  Seed points within 25 pixels (~50 μm) of the mount 
material were removed.  Visual observation was performed to identify regions that were 
incorrectly grown due to the mount material and scratches; these were manually removed prior to 
calculating microstructure statistics.   

Eutectic particle statistics from a serial image was tracked to quantitatively assess the degree of 
manual post-processing for removing incorrect particles and adding unidentified eutectic 
particles.  After removing particles with areas of 5 pixels or less (20 μm2), the following 
technique identified 231 particles, of which 1 was manually removed (i.e., 0.4% of initial particle 
count), and 8 particles were manually added (3.5%).  These added particles tended to be small, 
though, with sizes just above the particle size threshold.  As an additional step to insure correct 
segmentation of the eutectic particles, the maximum intensity of each of the correctly identified 
regions was used for a new seed point and the eutectic particles were grown again.  Previous 
work using an automated region growing technique for γ‘ precipitate segmentation [29] has 
shown that seed points near the interface may lead to slightly different segmentation than interior 
seed points.  However, this added step only decreased the average eutectic particle area by 0.3%.  
Afterwards, a final inspection of the segmented eutectic microstructure was performed with only 
a few small particles identified for addition. 

MICROSTRUCTURAL STATISTICS OF EUTECTIC PARTICLES 
 
The eutectic particles were segmented on sixteen successive slices spaced approximately 10 μm 
apart in the cropped section of the turbine blade image montage shown in Figure 3.2.1.  The 
images on successive slices were roughly aligned; after the particles were identified, the sections 
were aligned using a cross-correlation technique that accounted for both translation and rotation.   

2D statistics 

Figure 3.2.5 shows the distribution of eutectic particle statistics for the sixteen slices.  Figure 
3.2.5(a) shows a histogram of the 2D size distribution for 3836 eutectic particles.  Figure 3.2.5(b) 
shows a histogram of the 2D major axis length for these same eutectic particles.  The major axis 
length is a scalar value that is equal to the length of the major axis of the ellipse that has the same 
normalized second central moments as the eutectic particle [30].  On average, eutectic particles 
on 2D slices aligned perpendicular to the nominal growth direction have a major axis length of 
23 μm with an average particle area of 208 μm2.  Perhaps just as important for fatigue 
considerations are the extreme value statistics of the eutectic particles, i.e., the maximum major 
axis length was 120 μm and the maximum particle area was 1500 μm2.   
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(a) (b) 

Figure 3.2.5. Histograms showing the (a) size distribution and (b) major axis length distribution 
for the 3836 eutectic particles on the 2D slices. 

Figure 3.2.6(a) shows the nearest neighbor distance distribution for the eutectic particles on the 
2D slices.  The nearest neighbor distance is based on the centroid coordinates for each eutectic 
particle.  As with the particle statistics, the nearest neighbor distance is calculated for each 
particle in each slice and the data from the separate slices are combined, i.e., this distance does 
not incorporate particles from adjacent slices.  Figure 3.2.6(b) normalizes the nearest neighbor 
distance by the equivalent particle diameter.  On average, the nearest eutectic particle is 
approximately 132 μm, or 8 times the equivalent particle diameter, away. 

Eutectic particles near the surface of the blade may help initiate cracks within Ni-based 
superalloys.  Relative occurrence at the free surface compared to that in the interior may change 
due to the presence of temperature gradients during solidification near the free surfaces (i.e., cast 
walls).  Figure 3.2.7 shows the two-point correlation function between the free surface (FS) of 
the cast turbine blade and eutectic particle pixels (E) as a function of distance from the surface 
(d).  First, the Euclidean distance between each microstructure pixel and the mount material is 
calculated.  The distances are divided into bins spaced approximately 50 μm apart.  Then, the 
total number of eutectic and microstructure pixels is summed in each bin to give the probability 
of a eutectic pixel lying within a certain distance from the cast surface.  This plot shows that for 
the data collected there is seemingly no correlation between the cast surface and the occurrence 
of eutectic particles.  For reconstructing microstructures, this allows the microstructure to be 
constructed without needing to account for the effect at free surfaces, i.e., a bulk 3D 
microstructure can be generated and trimmed to the blade geometry. 
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(a) (b) 

Figure 3.2.6. (a) Histogram showing the nearest neighbor distance distribution for the 3836 
eutectic particles on the 2D slices.  (b) Histogram showing the nearest neighbor distance 
normalized by the size of the eutectic particle, i.e., the average distance between eutectic 
particles is 11 times the particle equivalent diameter. 

 
The eutectic particles‘ 2D statistics on successive slices can also be useful for examining the 
slice-to-slice variability.  Table 3.2.1 summarizes the variability in eutectic particle statistics 
from slice-to-slice in order of increasing coefficient of variation, i.e., the standard deviation 
normalized by the mean of each statistic.  The values in this table are found by first calculating 
the statistics for each slice and then applying the various operations to that data, i.e., the average 
particle size was calculated for all sixteen slices and then the average of those sixteen values was 
inserted in the column ‗Average‘.  The statistics with the highest variability are the extreme 
value statistics, such as the maximum particle size or maximum major axis length of the particles 
in each slice.  This trend is shown visually in Figure 3.2.8.  Figure 3.2.8 is a 3D histogram plot of 
the probability distribution function for the eutectic particle sizes as a function of increasing slice 
number (each neighboring slice is separated by 10 μm).  The extreme values of the eutectic 
particle sizes show noticeable change, while the PDF distribution (and its corresponding mean 
value) does not change as much.  The large variability in the extreme values of this distribution 
shows the difficulty with capturing the extreme value statistics, which may be important for high 
temperature mechanical properties such as high cycle fatigue [31]. 
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Figure 3.2.7. Graph showing the two-point correlation between the free surface (FS) and eutectic 
particles (E) as a function of distance from the surface (d). 

 
Table 3.2.1. Slice to slice variation in eutectic particle 2D statistics based on sixteen successive 
slices spaced approximately 10 μm apart. 

Eutectic Particle 2D Statistic Coefficient 
of Variation Average Standard 

Deviation 
Maximum 

Value 
NND1 (μm) 0.0519 131.98 6.85 146.25 

Average Major Axis Length (μm) 0.0522 22.93 1.20 24.78 
Normalized NND1 0.0769 10.86 0.84 12.90 

Average Particle Area (μm2) 0.0849 207.41 17.60 230.3 
Number of Particles 0.0917 239.75 21.99 272 
Area fraction (%) 0.1399 0.34% 0.05% 0.42% 

Maximum Particle Area  (μm2) 0.1416 1107.5 156.9 1500 
Maximum Major Axis Length  (μm) 0.1574 90.47 14.24 120.13 

1 NND is the nearest neighbour distance 
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Figure 3.2.8. Bar graphs showing the discrete probability density functions of eutectic particle 
size for the sixteen slices, shown collectively in 3D to highlight slice-to-slice variation.  

3D statistics 

Figure 3.2.9 shows the particle volume distribution for the 3D reconstructed eutectic particles.  
First, eutectic particles which intersected the sides of the image regions or the top or bottom 
images were removed, i.e., cases where all of the eutectic particle pixels may not have been 
captured.  After this step, particle pixels that extended from one slice to another were connected 
to form one 3D eutectic particle – 1394 whole particles were captured.  For each eutectic 
particle, the particle volume was calculated by multiplying the number of pixels in each eutectic 
particle by 40 μm3, i.e., 2-μm pixel spacing in both directions of the images by the 10-μm slice 
spacing.  On average, the 3D eutectic particles have a particle volume of 3751 μm3 (equivalent 
diameter of 19.3 μm).  Again, for properties controlled by extreme values, the maximum value of 
the eutectic particle volume was 38040 μm3, over ten times larger than the average particle 
volume.  The four largest eutectic particles are rendered on the histogram plot to illustrate the 
eutectic morphology.  The steps or ledges on the rendered particles correspond to the transition 
between eutectic particles on different slices.  It is important to consider that the resolution of the 
dataset can significantly affect the average particle volumes, i.e., these values may underestimate 
or overestimate volumes when compared to higher resolution images that are taken at a 2-μm 
slice interval to give a cubic voxel.  Future work will attempt to improve both resolution and 
image quality to enhance particle morphology and statistics. 
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Figure 3.2.9. Histogram plot showing the volume distribution for the 1394 3D eutectic particles.  
The four largest particles are rendered. 

Figure 3.2.10 shows particle length distribution in the dendrite growth direction for the 3D 
reconstructed eutectic particles with a rendering of the four largest particles.  On average, in the 
dendritic growth direction, the eutectic particles‘ length is 19 μm, i.e., approximately 2 slices.  
There were 674 particles (of 1394, approximately 48%) that only appeared on one slice; a finer 
spacing of slices is needed to accurately capture the 3D morphology of these smaller particles.  
On the other hand, the maximum length of the eutectic particles in the growth direction was 90 
μm with multiple particles having lengths of 70 μm (3 particles), 60 μm (13 particles), and 50 μm 
(42 particles).  The upper bound for lengths in the growth direction can be influenced by the 
secondary dendrite arm spacing, which is on the order of the maximum lengths found here [32].  
Interestingly, the curvature observed in the longest particle may indicate that some particles tend 
to grow around the secondary dendrite arms as well.  The four largest eutectic particles by 
volume had lengths in the growth direction of 50 and 60 μm and the four longest particles had 
volumes greater than 1500 μm3, indicating some degree of correlation between the eutectic 
particle volume and the length in the growth direction.    
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Figure 3.2.10. Histogram plot showing the eutectic particle length distribution for the 1394 3D 
eutectic particles.  The four largest particles are rendered. 

 

Figure 3.2.11(a) shows the nearest neighbor distance distribution for the eutectic particles.  As 
with the 2D nearest neighbor distances, the nearest neighbor distance is based on the x/y/z 
centroid coordinates for each eutectic particle.  Figure 3.2.6(b) normalizes the nearest neighbor 
distance by the equivalent particle diameter.  On average, the nearest eutectic particle is 
approximately 61 μm, or 4 times the equivalent particle diameter, away.  Note that these average 
nearest neighbor distances are approximately half of those calculated from the 2D images, 
reinforcing the necessity of collecting 3D particle statistics for reconstructing 3D synthetic 
volumes.    
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(a) (b) 

Figure 3.2.11. (a) Histogram showing the nearest neighbor distance distribution for the 1394 3D 
eutectic particles.  (b) Histogram showing the nearest neighbor distance normalized by the size 
of the eutectic particle, i.e., the average distance between eutectic particles is approximately 4 
times the particle equivalent diameter. 

While this technique considerably reduces the amount of time that would be spent manually 
identifying all eutectic particles, this technique still requires some manual intervention.  There 
are still opportunities for improving the technique to reduce the amount of manual intervention.  
One opportunity is to refine the seed detection algorithm.  At this point, the seed detection 
algorithm is based upon Sobel edge detection filters, which tend to define seeds in some 
incorrect regions (e.g., around scratches in the material).  Image processing techniques that can 
reduce seeds in incorrect regions and capture seeds in small eutectic particles that are missed 
would certainly help reduce manual intervention.  Additionally, improvements in image quality 
through image processing beforehand or through improving experimental methodology for 
capturing the images may further reduce manual intervention.  These are left for future work, but 
are essential for automating this process to fully reconstruct the 3D eutectic particle structure in 
single crystal nickel-based alloys. 

CONCLUSION 
 
In this work, we discuss a methodology for automated detection of eutectic particles in optical 
images taken on serial sections through a production turbine blade made of a heat-treated single 
crystal Ni-based superalloy.  The two important steps for region growing are the automated 
identification of the seed point within each particle and the automated stop point for the region 
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growing algorithm.  The seed points for the region growing algorithm are identified using edge 
detection filters, while the region growing stops when the intensity difference between the 
particle and the surrounding interdendritic region is maximized.  These image processing steps 
are suitable for segmenting eutectic particles in etched optical images with large contrast 
variability. 

Once detected, the segmented eutectic particles can be used to calculate microstructural statistics 
for characterization of single crystal Ni-based superalloys.  In addition to histograms of eutectic 
particle size and their spatial arrangement, two-point correlation functions show that their 
occurrence is not impacted by the free surface of the blade.  Also, the slice-to-slice variability is 
much greater for extreme values of particle size and particle major axis length.  The significance 
of this work is its ability to automate characterization for analyzing the 3D morphology and 
statistics of eutectic particles. 
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3.3. Symmetry-based Technique for Automated Extraction of 
Microstructural Features: Application to Dendritic Cores in Single 
Crystal Ni-Based Superalloys 

Serial sectioning methods continue to produce a wealth of image data for quantifying the three-
dimensional nature of material microstructures.  In this subsection, we discuss a computational 
methodology for automated detection and 3D characterization of dendrite cores from images 
taken from slices of a production turbine blade made of a heat-treated single crystal Ni-based 
superalloy.  The dendrite core locations are detected using an automated segmentation technique 
that incorporates information over multiple length scales and exploits the four-fold symmetry of 
the dendrites when viewed down the <001> growth direction.  Additional rules that take 
advantage of the continuity of the dendrites from slice to slice help to exclude segmentation 
artifacts and improve dendrite core segmentation.  The significance of this technique is that it can 
be extended to include any symmetry features such as mirror planes, improper rotations, or color 
symmetry, by using suitable matrix representations of these operations.  For simplicity, only the 
four-fold rotation is included in this work.  

INTRODUCTION 
 
Knowledge of the three-dimensional (3D) nature of microstructural features may be important 
for ascertaining certain properties in many material systems.  Serial sectioning is a labor-
intensive, but effective, tool that is often used to provide datasets essential for characterizing the 
three-dimensional (3D) microstructure in many material systems.  The ability to automate the 
removal of material at controlled rates through either mechanical polishing [1-3], microtome 
milling, or focused ion beam milling [4-8], has enabled researchers to obtain 3D microstructure 
datasets at a range of length scales.  To further enhance the speed of collecting these datasets, the 
method of removal is often coupled with the imaging instrument, e.g., mechanical polishing with 
optical imaging [1], or FIB with EBSD imaging [4-7].  This technique has helped to produce the 
3D microstructure in a number of materials, e.g., 
 

 the polycrystalline grain structure in Ni-based superalloys (IN100) [5] 
 the dendritic structure in single crystal nickel-based superalloys [9, 10], Al-Cu alloys 

[11, 12], and Pb-Sn alloys [13, 14] 
 reinforcement particle for particle-reinforced metal-matrix composites [15, 16] 
 microstructure (cementite, ferrite, austenite, martensite, and pearlite) colonies in alloy 

steels [17-20] 
 the structure of pitch-based carbon foams [21] 
 the γ-γ‘ microstructure in Ni alloys [4, 22, 23] 
 intermetallic particles in Sn-rich solder [24] 
 pore morphology in die-cast magnesium alloys [25] 
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In this work, the 3D dendritic microstructure in single crystal nickel-based superalloys is 
investigated.  Large montage images from the airfoil section of a turbine blade were used to 
obtain the 3D dendritic structure.  In single crystal nickel-based superalloys, the dendritic 
structure is the most striking feature of the microstructure as this is the first region to solidify.  In 
addition to providing insight into its growth within the turbine blade, the 3D dendritic structure 
may also provide insight into the occurrence and spatial relationship of pores and eutectic 
particles, which may be important to consider for fatigue simulations.  Parallel work concentrates 
on automated detection and 3D characterization of eutectic particles to reconstruct the 
interdendritic structure of the blade [26].  Identifying both of these features is important for 
obtaining a quantitative description of the structure of single crystal nickel-based superalloys 
used in turbine blade applications.   

Successful efforts to automate serial sectioning techniques to produce large sets of 
microstructure images [1, 2, 9, 10] have led to overwhelming amounts of data resulting in a 
bottleneck at the image processing and analysis step.  This statement is particularly true for the 
image segmentation step in complex multi-component microstructures, e.g., the eutectic 
particles, pores, carbides, and dendrites in the single crystal microstructure investigated here.  
While manual identification of dendrites in single crystal nickel-based superalloys can be done 
for tens to a few hundred dendrites, this process is very time-consuming for larger numbers of 
dendrites.  Typical data sets can contain 50 or more serial slices with at least 250 dendrite cores 
per slice, so the time required to manually identify these features is substantial.  Automating the 
identification and reconstruction of microstructural features will be required for this approach to 
reach its full potential.  Reliable assessment of microstructural statistics will require processing 
large datasets. 

The rapid growth in 3D microstructure characterization is driven by the requirements of 
integrated computational models that link processing to properties and performance.  From a 
properties perspective, 3D microstructure statistics can enhance the predictive capability of finite 
element models that take microstructure into account.  Reconstructing the microstructure at the 
relevant length scale(s) for high temperature mechanical behavior can be used in concurrent 
multi-scale FE models that account for material microstructure.  For instance, Ghosh and 
coworkers [27] have developed a concurrent multi-level model whereby multiple levels of 
refinement are used to simulate crack growth behavior.  The level zero continuum approximation 
corresponds to a constitutive response consistent with a homogenization of microstructure and 
properties over the entire domain of the turbine blade.  Level one would capture the variation in 
response produced by crystal rotations of different dendritic domains, and the density of primary 
dendrites (primary dendrite arm spacing).  Finer details in the microstructure such as the 
secondary arm spacing, eutectic phase, carbide and void distribution would be captured in a level 
two representation.  One objective of this research is to measure the statistics necessary to 
generate statistically representative volume elements for inclusion in these models. 

The present article discusses an automated image processing technique for extracting symmetric 
features in microstructural images.  In materials science applications, symmetry often plays a 
role in the development of microstructure (especially in crystallography), yet symmetry is 
seldom used for image processing techniques.  Subsequently, this technique is applied to a single 
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crystal nickel-based superalloy to identify dendrite core locations by using their four-fold 
symmetry as viewed along the <100> growth direction.  First, we show the acquired serial 
images and describe the difficulties encountered with extracting dendrite core locations from 
these serial images.  Second, we describe the automated symmetry-based technique and its 
application to images that contain both microstructure and mount material, its use of slice 
continuity for improved segmentation, and its current problems and potential areas of 
improvements.  The significance of this technique is that it can be extended to include any 
symmetry features such as mirror planes, improper rotations, or color symmetry, by using 
suitable matrix representations of these operations.  For simplicity, only the four-fold rotation is 
included in this work.   

IMAGE ACQUISITION 
 
Figure 3.3.1 shows an etched optical image montage for a serial slice perpendicular to the 
nominal growth direction of a single crystal nickel-based superalloy (PWA 1484) turbine blade, 
which was filet cut through the interior passage.  Further details of the experimental method for 
obtaining the images are given in Groeber et al. [28].  The green (small) box is an image 
showing a single dendrite as viewed from the <100> growth direction and is used for describing 
the algorithm in Figure 3.3.2.  The blue (intermediate) box is an image of a group of dendrites 
along with eutectic particles (bright particles within the interdendritic area), which is used to 
assess the symmetry-based technique (Figure 3.3.3).  Last, the red (large) box delineates a 6-mm 
x 6-mm (3000 x 3000 pixels) subset of the turbine blade that is subsequently used to test the 
technique on a microstructural area with a large number of features that can bias the calculation 
(i.e., both the mount material and eutectic particles).   

 

Figure 3.3.1. This image montage shows the microstructure of a cross-section of a single crystal 
nickel-based superalloy turbine blade.  The red, blue, and green boxes highlight microstructural 
areas used for the symmetry-based technique. 
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There are several problems associated with manual or standard image processing methods to 
identify dendrite cores.   

1. Large amount of image information.  The large size of the images and the potential 
number of slices required to reconstruct the dendritic structure for a large amount of 
material make it difficult to manually identify the dendrite cores in each slice.  For 
instance, the pixel spacing for the optical images is approximately 2-μm and the image 
size shown in Figure 3.3.1 is 35 mm x 8 mm (17544 x 4244 pixels).  The number of 
dendrite cores manually identified routinely approaches 500 or more in some slices. 

2. Intensity changes within image.  The etchant used to highlight dendrite cores can etch 
material at different rates within the same slice, varying the contrast in intensity for the 
dendrite cores and arms.  Additionally, each montage image is the result of stitching a 2D 
array of individual images together.  Occasionally, an individual image may be out-of-
focus or the image contrast may change slightly in the region where two individual 
images were stitched together.  Standard methods for leveling the contrast within the 
blade region to correct this do not account for the mount material, which would 
incorrectly skew intensity values near the edges of the blade.   

3. 3D dendrite morphology.  The 2D shape of the 3D dendrite structure is continually 
changing on successive images.  Additionally, the dendrite arms within a serial slice may 
not all be similarly oriented, i.e., there may be a range of dendrite arm orientation angles 
with respect their respective dendrite cores.  Both of these can be problematic for cross 
correlation techniques [29, 30], which typically use a template (a particular object or 
region, e.g., a typical dendrite shape in this case) to determine the locations of similar 
features within a larger image. 

 
Therefore, a technique other than manual identification is required for processing these large 
images.  To address these problems, the automated symmetry-based technique presented is 
almost entirely automated, requiring very little operator intervention.  Also, this technique uses 
image information from the local region around each pixel to offset any potential intensity 
contrast over the serial montage image due to the image acquisition process.  Moreover, by using 
the four-fold symmetry of the dendrite arms as viewed from the <001> growth direction, the 
problematic element of the potential variability in the dendrite arm orientations for cross 
correlation techniques is eliminated.  

FOUR-FOLD SYMMETRY FILTER 
 
Methodology and Application to Simple Image 

Conventional image processing uses only the intensity information in the image, which is 
conventionally known as ―observation information.‖  This work builds on conventional methods 
by including the ―prior information‖ that the cores should, on average, have four-fold symmetry, 
when viewed along the <100> growth direction (i.e., see the green box in Figure 3.3.1).  The 
observation information would be the differences in intensity and textures for the different 
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constituents of the image: the mount material, the dendrites, the eutectic particles and the 
interdendritic region.  Combining this observation information with the prior information of the 
symmetry allows automatic identification of the cores. 

By calculating a quantitative symmetry parameter for each pixel in an intensity image, those 
pixels in local neighborhoods with a high four-fold symmetry parameter can be detected using a 
simple threshold.  Figure 3.3.2 shows a schematic of how the symmetry parameter is evaluated 
for a single pixel without accounting for mount material or eutectic particles.  The red (large) 
image from Figure 3.3.1 is shown in Figure 3.3.2(a).  The four-fold symmetry parameter for a 
single pixel within this image is calculated as follows:  

(1) A single pixel within Figure 3.3.2(a) is chosen to calculate the four-fold symmetry 
parameter.  Then, a local neighborhood around the pixel is identified for a particular 
length scale (e.g., 300-μm x 300-μm in Figure 3.3.2) and the associated intensity image 
of this neighborhood is used for the four-fold symmetry filter (Figure 3.3.2(b)).  

(2) The intensity image (Figure 3.3.2(b)) is subsequently rotated by 90° three times to 
produce the images shown in Figures 3.3.2(c)-3.3.2(e). 

(3) A local average intensity image (Figure 3.3.2(f)) is calculated from the four rotated 
images in Figures 3.3.2(b)-3.3.2(e).  When there are features within the local 
neighborhood that should not be taken into account for the four-fold symmetry 
parameter, the average intensity image may need to be corrected.  Figure 3.3.2(g) is the 
result after accounting for these features (no effect in this example).  How this technique 
accounts for these features is shown in Figure 3.3.5 and discussed later.  

(4) Figure 3.3.2(h) shows an image of the deviation at every pixel between the intensity 
values in Figure 3.3.2(g) and Figure 3.3.2(b).  The l2-norm (square root of the sum of the 
squares of the pixels) is inverted to calculate the symmetry parameter of the local 
neighborhood for the single starting pixel.  

 

To test the applicability of the four-fold symmetry filter to extracting dendrite core locations, the 
1.4-mm x 1.4-mm blue (intermediate) image was selected from the serial slice.  Three different 
neighborhood sizes were used to investigate the influence of neighborhood size on the results: 
100, 200 and 300 μm.  Figure 3.3.3 shows the resulting images for the four-fold symmetry filter 
using neighborhood sizes of 100 μm (a), 200 μm (b), and 300 μm (c).  Visual comparison of the 
dendrite core locations in the original image (Figure 3.3.1, blue) with the four-fold filtered 
images shows that the intensity is high in the dendrite core locations.  However, the intensity is 
also often high in the secondary arms and sometimes in the interdendritic area, so a simple 
threshold at any length scale may be inadequate for segmenting the dendrite core locations from 
these filtered images.  The original intensity information can also be useful for detecting the 
correct symmetric features (e.g., distinguishing four-fold symmetric dendritic regions from four-
fold symmetric interdendritic regions).  Also, notice that the eutectic particles in Figures 
3.3.3(a)-3.3.3(c) are shown in black.  This does not reflect an absence of four-fold symmetry in 
these particles; rather, the eutectic particles were previously segmented and are accounted for in 
the four-fold symmetry filter so they do not affect the extraction of the dendrite core locations. 
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Figure 3.3.2. This schematic shows how a single pixel within the image is processed using the 
four-fold symmetry filter.  A 300-μm x 300-μm local image (b) surrounding a single pixel within 
(a) is chosen and rotated in 90° increments to produce (c)-(e).  Image (f) is the average of the 
four rotated images and (g) is the corrected average for the mount material and eutectic particles 
(not required here).  Image (h) shows the deviation between image (g) and image (b).  The 
inverse of the sum of the values in image (h) is the four-fold symmetry parameter for the starting 
pixel. 

 

The technique was made more robust by segmenting the dendrite core locations with a vector-
based segmentation approach using the four-fold symmetry parameters.  In this manner, each 
pixel within the original image has a vector associated with it that reflects information from 
multiple length scales.  For example, in this case, the four-fold symmetry parameters for local 
neighborhood sizes of 100, 150, 200, 250, and 300 μm were used to construct a vector-based 
image to help segment the dendrite cores.  Then, the dimensionality of this vector-based image is 
reduced by taking the l2-norm of the vector within each pixel and multiplying by the original 
intensity image (to further reduce peaks in secondary/tertiary dendrite arms and interdendritic 
areas).  Again, the intensity information of the original image is used to differentiate four-fold 
symmetry in the dendrite cores from that in the interdendritic regions.   
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Figure 3.3.3. The four-fold symmetry filter was applied to the original intensity image (shown in 
blue in Figure 3.3.1).  The resulting values from the symmetry filter are rescaled to form 8-bit 
images and are shown in (a), (b), and (c) using neighborhood sizes of n = 100 μm, 200 μm, and 
300 μm, respectively.  The corresponding weighting factor images for (a), (b), and (c) are shown 
in (d), (e), and (f), respectively. 

 

Additionally, weighting the four-fold symmetry parameter at different length scales using the 
corresponding standard deviation of the local neighborhood intensities is important for smaller 
length scales where high four-fold symmetry parameters may reflect that the homogeneity of 
intensities within a local neighborhood rather than the actual four-fold symmetry (e.g., the local 
region lies entirely within a dendrite arm).  Figures 3.3.3(d)-3.3.3(f) show the weighting factors 
for the corresponding images in Figures 3.3.3(a)-3(c), using the standard deviations from 
neighborhood sizes of 100 μm, 200 μm, and 300 μm, respectively.  The values on the scale 
marker on the right-hand side of Figure 3.3.3(f) reflect the five different neighborhood sizes.  
The weighting factor for each pixel at each scale is simply the standard deviation for intensities 
within that neighborhood divided by the sum of standard deviations over all scales for that pixel.  
Notice that some of the high four-fold symmetry values in the 100 μm image (Figure 3.3.3(a)) 
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have a low weighting factor (~0.05) in Figure 3.3.3(d), whereas the weighting factor would be 
0.20 if all scales were weighted evenly.  This desensitizes the vector-based image to high four-
fold symmetry values due to similar intensities over a local neighborhood on a per pixel basis. 

Figure 3.3.4 shows images from the vector-based segmentation.  Figure 3.3.4(a) shows the single 
output image generated by combining the four-fold symmetry images with the weight factor 
images at the five neighborhood sizes.  While many of the dendrite cores have high four-fold 
symmetry values, some interdendritic areas also have high four-fold symmetry values.  Figure 
3.3.4(b) multiplies Figure 3.3.4(a) by the original intensity image.  If the background intensity 
changes significantly, the original intensity image may need to be leveled before this operation.  
Figure 3.3.4(c) shows the image after applying further image processing operations to help 
accentuate the peaks for detection.  First, Gaussian smoothing is used to reduce noise within the 
image.  Then, a morphological top hat filter is applied to enhance the peak definition.     

 

 

Figure 3.3.4.  Image (a) was obtained using the four-fold symmetry and weighting factor images 
at five length scales (e.g., see the images in Figure 3.3.3).   After multiplying by the original 
intensity image (b), a further Gaussian and top hat operation are applied to produce the vector-
based final image (c).  A user-specified threshold parameter was applied to (c) and the 
segmented dendrite cores (red) are superimposed onto the original intensity image (d). 
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The resulting image from the multi-scale four-fold symmetry filter (Figure 3.3.4(c)) can now be 
segmented to extract the dendrite core locations.  Prior to this point, the four-fold symmetry 
filters can operate in an automated fashion requiring no user intervention.  While various 
automated segmentation methods exist [e.g., 31-32], this image is easily segmented using a user-
defined threshold parameter.  In this image, the range of user-defined intensity thresholds that 
correctly identified all dendrite core locations was quite large (range of 141-202 when this image 
was rescaled to an 8-bit image).  Figure 3.3.4(d) superimposes the segmented dendrite core 
locations (in red) obtained using a threshold parameter of 142 onto the original intensity image.  
This technique identified all the dendrite cores while only requiring the manual manipulation of a 
single parameter (the threshold parameter). 

Application to Complex Image with Edge Effects 

Extending the four-fold symmetry filter to the large image in Figure 3.3.1 requires dealing with 
edge effects due to the mount material, though.  For instance, in local neighborhoods that contain 
the mount material, the four-fold symmetry would be extremely low for a dendrite core near the 
boundary.  Therefore, the mount material needs to be accounted for in the symmetry filter.  
Moreover, the eutectic particles can decrease the four-fold symmetry value in a similar way to 
the mount material.  In prior work [26], the mount material and eutectic particles were 
segmented for 16 successive serial images that were spaced approximately 10 μm apart.  As an 
example of how the four-fold symmetry filter is modified to account for edge effects, this same 
set of 6 x 6-mm images is used in this article. 

Figure 3.3.5 shows a schematic of how a single pixel within the image is processed using the 
four-fold symmetry filter at a single length scale (300 x 300 μm).  This schematic is similar to 
that in Figure 3.3.2, except that the mount material and eutectic particles are included in this 
region.  The four-fold symmetry value for a single pixel within this image is calculated as 
follows:  

(1) A single pixel within Figure 3.3.5(a) is chosen and then a 300 x 300-μm intensity image 
centered about the pixel is used for the four-fold symmetry filter (Figure 3.3.5(b)).  A 
complementary 300 x 300-μm binary image for Figure 3.3.5(b) that indicates pixels 
belonging to the mount material and eutectic particles (in black) is also shown in Figure 
3.3.5(g).  Additionally, the mount material and eutectic particles are given an intensity 
value of zero in Figure 3.3.5(b).   

(2) The intensity image (Figure 3.3.5(b)) and binary image (Figure 3.3.5(g)) are rotated by 
90° three times to produce the images shown in Figures 3.3.5(c)-3.3.5(e) and Figures 
3.3.5(h)-3.3.5(j), respectively. 

(3) The four rotated images in Figures 3.3.5(b)-3.3.5(e) and Figures 3.3.5(g)-3.3.5(j) are 
averaged to generate Figures 3.3.5(f) and 3.3.5(g), respectively.  This, however, does not 
account for the mount material or eutectic particles in the rotated images.  Figure 3.3.5(l) 
corrects the average intensity by accounting for pixels where the mount material and 
eutectic particles have contributed. 

(4) Figure 3.3.5(m) shows an image of the squared deviation at every pixel between the 
intensity values in Figure 3.3.5(l) and Figure 3.3.5(b).  Next, the values in Figure 
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3.3.5(m) are summed for all pixels which are not mount material or eutectic particles 
(i.e., all the white pixels in Figure 3.3.5(g)).  The inverse of this value is the four-fold 
symmetry value for the single starting pixel. 

 

 

Figure 3.3.5. This schematic shows how a single pixel within the image is processed using the 
four-fold symmetry filter at a single length scale.  A 300 x 300 μm neighborhood centered 
around a single pixel within (a) is chosen.  Images (b)-(e) and (g)-(j) show the local image and its 
associated binary image (with mount and eutectic particles in black) for four 90° rotations.  
Images (f) and (g) are the average of the four rotated images.  Image (l) corrects the average 
intensity for the mount material and eutectic particles, while image (m) shows the deviation 



 

 

38 

 

between image (l) and image (b).  The inverse of the sum of the values in image (m) is the four-
fold symmetry value for the starting pixel. 

Figure 3.3.6(a) shows an example of one of the serial slices after applying the four-fold 
symmetry filter technique outlined in Figure 3.3.5 with the subsequent post-processing filters 
(Gaussian, top hat filters) as described previously.  Figure 3.3.6(b) shows the original intensity 
image with the dendrite cores identified through a user-specified threshold parameter applied to 
Figure 3.3.8(a) (the red dots were enlarged slightly to show the dendrite core locations). 

 

 

Figure 3.3.6. These images show an example of how the four-fold symmetry filter performs 
when applied to a 6-mm x 6-mm section of a serial slice.  Figure 3.3.6(a) shows the vector-based 
final image and Figure 3.3.6(b) shows the original intensity image with the segmented dendrite 
cores (red) identified through a user-specified threshold parameter. 

 

To assess the quality of this technique, the results of the automated symmetry-based technique 
were compared to the ground truth obtained from manual identification of the dendrite cores.  
The symmetry-based technique correctly identified 92 dendrite core locations in this image with 
only 1 area incorrectly identified as a dendrite core (secondary dendrite arm intersecting a 
tertiary arm near the mount material).  Additionally, there was one dendrite core in the interior 
that was missed, but should have been detected.  Several dendrite cores at the mount 
material/microstructure boundary were not identified, but might have been identified manually 
depending on the operator.  Overall, the results of the symmetry-based technique are good 
considering the difficulty of accounting for confounding features within the image.  As can be 
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observed from Figure 3.3.4(d), this technique does extremely well without these confounding 
features.   The statistics from all 16 serial images show that, on average, 94 features were 
detected, of which 5.25 features were not dendrite cores (5.6%), and 6.31 dendrite cores were not 
detected (6.7%).  

Improving Feature Extraction using Continuity Rules 

 

The continuity of the dendritic cores from slice to slice can be exploited to improve extraction of 
dendrite core locations.  A set of continuity rules may help locate missed dendrite cores and help 
discount incorrectly identified features.  For instance, a dendrite core will typically appear on 
multiple slices.  For missed dendrite cores, the adjacent slices may have detected dendrite cores, 
indicating that the missed dendrite core should probably be included.  For incorrectly identified 
features, the adjacent slices may not have detected dendrite cores, indicating that the incorrectly 
identified feature is not a dendrite core.   

An initial set of continuity rules was applied to the stack of 16 binary images generated using a 
manually-identified threshold parameter.  First, the images obtained with the four-fold symmetry 
filter were aligned via rotation and translation using an autocorrelation technique1.  Then, the 
binary images were generated by (i) manually selecting a threshold parameter to segment the 
four-fold symmetry image for each slice, and (ii) replacing each segmented object2 with a circle 
with radius c1.  Then the following continuity rules were applied to improve the segmentation on 
individual binary images: 

 Minimum dendrite length.  The dendritic core will have a minimum length in the 
<001> direction of c2 or greater.  Therefore, this rule eliminates objects that may only 
appear on a few adjacent slices, but not any slices before or afterwards. 
 

 Minimum slice occurrence.  The dendritic cores appear on at least c3 percent of the 
slices between the start and end of each dendrite.  This rule eliminates objects that appear 
randomly over multiple slices spaced a distance c2 or greater.  This rule also adds 
dendrite cores to the binary serial images if they occur in a great enough frequency, 
assuming that they are bounded by the starting and ending slice of that particular dendrite 
core.   

 
 Minimum size threshold.  The dendritic cores grow vertically with respect to the aligned 

binary images and, hence, the circular objects should align fairly well.  In general, this 
rule removes small artifacts with a size below c4 that appear at the mount/material 
boundary. 

 

                                                 
1 It is important to note that this will align the stack of images with the dendrite cores, not the fiducial markers in the 
mount.  Subsequent re-alignment by the fiducial markers may be required in a later step.  
2 The term ―object‖ is used to refer to a segmented area that may or may not be an actual dendrite core. 
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Applying these rules to a stack of serial images should eliminate most incorrectly segmented 
objects and add dendrite core locations to the slices where the four-fold symmetry filter 
generated a lower-intensity peak.  To increase the accuracy of these rules, the operator may 
manually subtract segmented objects and add dendrite cores to establish a ―ground truth‖ image 
every so many slices.  For this stack of serial images, a ―ground truth‖ image was generated for 
the first and last slice and the following parameters were used: c1 = 13 pixels, c2 = 50 μm, c3 = 
25%, c4 = 400 pixels.   

Figure 3.3.7 examines how these continuity rules combine image information from multiple 
slices to improve the dendrite core extraction.  Figure 3.3.7(a) shows the segmented objects 
(black) from all 16 slices on one image.  Figure 3.3.7(b) shows the 70 objects that appear on all 
16 slices.  Since all of these objects are dendrite cores, this subfigure indicates that the dendrite 
cores in the interior of the blade are the easiest to segment.  Note that over 70% of the dendrite 
cores were easily segmented on all 16 slices.  As was observed in Figure 3.3.4(d), images with a 
low density of confounding features should have higher dendrite core detection rates.  Figure 
3.3.7(c) shows the objects eliminated by the continuity rules.  Almost all of the objects 
eliminated were at the mount/microstructure boundary, although a few were in regions where the 
dendrite growth direction changed.  Three of the deleted objects are circled in red to show that 
these may have been manually identified as dendrite cores at the mount/microstructure boundary; 
these have also been circled in the image in Figure 3.3.7(d).  Figure 3.3.7(d) shows the modified 
extraction of the dendrite core locations using the continuity rules.  The four-fold symmetry filter 
with the continuity rules does an effective job of extracting most dendrite cores.  The blue circles 
in this subfigure represent dendrite cores that should have been detected, but were not detected 
due to inadequate image pre-processing.  The problem responsible for detecting these dendrite 
cores is shown in Figures 3.3.8(e)-3.3.8(h) and is discussed later. 
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Figure 3.3.7. These images show the effect of applying continuity rules to combine image 
information from multiple slices.  Figure 3.3.7(a) shows the segmented objects (black) from all 
16 slices, Figure 3.3.7(b) shows the 70 objects that appear on all 16 slices, Figure 3.3.7(c) shows 
the objects eliminated by the continuity rules, and Figure 3.3.7(d) shows the modified extraction 
of the dendrite core locations using the continuity rules. 

 

 

Current Problems / Potential improvements 

 

This symmetry-based technique can considerably reduce the amount of time spent manually 
identifying all dendrite cores within a serial image the size of Figure 3.3.1 or larger.  However, at 
this point, this technique can still be improved.  Several problems were encountered when using 
this technique to identify dendrite cores in a single crystal turbine blade.  Figure 3.3.8 shows 
some examples where the current technique has problems and where modifications can lead to 
potential improvements.  These are left for future work, but would be essential for fully 
automating this process to construct the 3D dendrite core structure.   
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Figure 3.3.8. These images show examples of some problems as well as potential improvements 
to the current technique.  Figures 3.3.8(a) and 3.3.8(c) show example images of dendrite cores at 
the mount/microstructure boundary and the difficulty with segmenting the dendrite core from the 
four-fold symmetry images (Figures 3.3.8(b) and 3.3.8(d), respectively).  Figures 3.3.8(e) and 
3.3.8(g) show how improving segmentation of the mount material can impact the four-fold 
symmetry value (in Figures 3.3.8(f) and 3.3.8(h), respectively).  Figure 3.3.8(i) shows an 
example of automated selection of the threshold parameter for segmenting dendrite cores using a 
―ground truth‖ image from an adjacent slice. 

 

Figures 3.3.8(a) and 3.3.8(c) show images on nearby slices, on which the dendrite core is 
detected on one and not on the other.  Figures 3.3.8(b) and 3.3.8(d) show the complementary 
four-fold symmetry filtered images to Figures 3.3.8(a) and 3.3.8(c), where the maximum 
intensity in the dendrite cores was 54 and 50, respectively.  However, in Figure 3.3.8(d), the 
white arrow points to a region with a higher intensity for this image (54), which would mean that 
an incorrect object would be identified prior to identifying the dendrite core at the boundary.  
Additionally, these subfigures illustrate the problem with identifying cores at the boundary – at 
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what point do the dendrite arms cease to have a core?  In many cases, the intersection of the 
dendrite arms (the dendrite core) is right on the mount/microstructure boundary, or appears to be 
a little outside the boundary.  While this is a problem with repeatability from slice to slice, 
modifying parameters within the continuity rules or adding new continuity rules may help to 
better identify dendrite cores at the boundaries.   

The input image quality certainly affects the output of the four-fold symmetry technique.  
Improvements in the four-fold symmetry technique can be realized by reducing scratches and 
increasing intensity contrast within the serial intensity images through either experimental 
methodology or subsequent image processing techniques.  Additionally, this technique uses the 
segmented mount material and eutectic particles.  Improving the segmentation of either of these 
features will improve the results presented in this article.   

One example of how improving segmentation would improve the results is shown in Figures 
3.3.8(e) and 3.3.8(g).  This dendrite core lies near the mount/microstructure boundary and was 
not identified on any of the slices with this technique.  In both subfigures, the mount material and 
eutectic particles have been segmented and are indicated by black pixels.  The difference 
between these figures is that in Figure 3.3.8(g), the segmented mount material was modified to 
remove the white pixels on the bottom edge of the microstructure (a remnant of the EDM filet 
cut through the interior of the blade).  The corresponding four-fold symmetry images are shown 
in Figure 3.3.8(f) and 3.3.8(h).  The maximum intensity value for the dendrite core was increased 
by 87% in Figure 3.3.8(h), assuring detection of the dendrite core. 

Reducing the amount of time spent manually selecting a threshold parameter to segment the 
four-fold symmetry filtered serial images would also improve the current technique.  A potential 
method for automating this is to establish a ―ground truth‖ image for the first slice and then 
automate the selection of this threshold parameter on subsequent adjacent slices by optimizing a 
penalty function.  This penalty function can be based on the number correctly identified and the 
number incorrectly identified.  Once the penalty function for the adjacent slice is optimized, this 
segmentation can then be used to optimize segmentation on the next slice.  In this manner, all 
slices after the first slice can be automatically segmented using a penalty function.  An example 
of maximizing a penalty function (number of correct minus the number incorrect) to automate 
segmentation is shown in Figure 3.3.8(i), where 91 dendrite cores are correctly identified and 3 
objects are false positives. 
 
CONCLUSION 
 
This article discusses an automated technique for extraction of the spatial locations of dendrite 
cores from serial images taken a production turbine blade composed of a heat-treated single 
crystal Ni-based superalloy.  The technique incorporates image information over multiple length 
scales and exploits the four-fold symmetry of the dendrites when viewed down the <001> 
growth direction.  Additional rules take advantage of the continuity of the dendrites from slice to 
slice to help exclude segmentation artifacts and improve dendrite core segmentation.  Automated 
techniques that operate on symmetric features can be a valuable tool for quantitatively 
characterizing material microstructures. 
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3.4.     Automated Identification and Characterization of Secondary & 
Tertiary γ’ Precipitates in Nickel-based Superalloys 

 

The use of different electron loss edges in energy filtered transmission electron microscopy 
(EFTEM) has allowed researchers to capture images of the morphology and size of precipitates 
in nickel-based superalloys.  In this subsection, we discuss a computational methodology for 
automated detection of secondary and tertiary γ‘ precipitates in EFTEM images.  The optimum 
parameters for the automated region growing technique were identified using a combination of 
visual inspection and intensity information from the EFTEM images.  The microstructural 
statistics obtained from the segmented γ‘ precipitates agreed with those of the manually 
segmented precipitates.  Then, automated segmented precipitates are used to extract 
microstructural information about the distributions of equivalent diameters of 656 tertiary 
precipitates along with the distances to the nearest secondary precipitates.  The significance of 
this technique is its ability to automate segmentation of precipitates in a reproducible manner for 
acquiring microstructural statistics that relate to both processing and properties. 

 
INTRODUCTION 
 
The underlying γ‘ precipitate structure in nickel-based superalloys plays a commanding role in 
the mechanical behavior of these alloys at high temperatures [1-3].  Previous work [4, 5] has 
shown that changes in processing can result in large changes in high temperature mechanical 
properties, such as creep and fatigue.  Therefore, it is vital to be able to characterize the statistics 
related to γ‘ precipitates in these alloys to assess how influence of various processing conditions.  
Previous work by some of the present authors has shown that the use of automated image 
processing techniques are helpful in segmenting microstructure features that drive many of the 
strengthening mechanisms in titanium and nickel base super alloys [6-8].  Additionally, Tiley et 
al. [6] and others [9, 10] have shown that energy filtered transmission electron microscopy 
(EFTEM) is the state of the art technique for imaging γ‘ precipitates.   

While much effort has been expended to refine techniques for imaging γ‘ precipitates in EFTEM 
images, the analysis of these images is also very important and in many cases can be the 
bottleneck of the process.  Manual identification of the precipitate structure is very time-
intensive and may not be reproducible between researchers.  Automating the segmentation 
process for secondary and tertiary γ‘ precipitates is required to accurately compare the influence 
of processing on the underlying γ‘ structure.  Reliable assessment of microstructural statistics 
related to the precipitate size distributions and distances between precipitates is critical for 
models that predict precipitate microstructure evolution and mechanical properties.   
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In this subsection, we present an automated technique for detecting secondary and tertiary γ‘ 
precipitates in EFTEM images of nickel-based superalloys.  First, we briefly describe the 
processing history for the nickel-based superalloy and the acquisition process for the EFTEM 
images.  Second, the automated technique used to identify the γ‘ precipitates is described.  Third, 
several key parameters used in the automated technique are examined and optimized.  Last, this 
automated technique is used to segment the secondary and tertiary γ‘ precipitates in eight 
EFTEM images and calculate the associated microstructural statistics.  The significance of this 
technique is its ability to automate segmentation of precipitates in a reproducible manner for 
acquiring microstructural statistics that relate to both processing and properties. 

 
EXPERIMENTAL METHODOLOGY 
 
A nickel-based superalloy sample (Rene88DT) was cut from a forged disc developed under a 
Defense Advanced Research Projects Agency funded effort [11].  The sample was solutionized 
at 1050° C to dissolve primary γ‘ and then water quenched and subsequently aged at 760°C for 
25 hours to produce a fine dispersion of uni-modal γ‘ precipitates.    From earlier work, it is 
known that the Co and Cr preferentially segregate to the matrix material [6].  The Al, Nb, Ti, and 
Ni elements segregate to the ordered γ‘.  Samples were cut and polished to produce TEM foils 
with a 50-nm thickness.  The samples were imaged on a Technai FEI 200-kV TEM using a 
Gatan Imaging Filter.  Previous work found that the Chromium edge in EFTEM images provided 
the best gamma prime precipitate contrast for quantifying precipitate sizes and area fractions 
[12].  In contrast to that work, this work uses 30 precipitates from Cr edge EFTEM images to 
find the optimum parameters for an automated segmentation technique. 

Figure 3.4.1 shows images of eight secondary (1-8) and eight tertiary (9-16) γ‘ precipitates 
extracted from EFTEM images that were slow cooled.  Several problems with segmenting the γ‘ 
precipitates are apparent from Figure 3.4.1, e.g., the morphology of the secondary precipitates, 
the changes in intensity within the precipitates, the intensity gradient at the boundaries, and a low 
level of noise.  Some of the intensity changes within the secondary precipitates are typically due 
to a low volume fraction of the precipitate within the thin film, i.e., during preparation, the TEM 
foil barely sliced through the precipitate in some locations (e.g., the upper right corner of the 
precipitate in image 3).  While the tertiary precipitates are all spherical in shape, the particles 
selected included some precipitates that would be difficult to manually segment (e.g., image 15) 
and even some overlapping particles (e.g., image 16). 
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Figure 3.4.1.  Images showing the variations in precipitate morphology for primary (1-8) and 
secondary (9-16) γ‘ precipitates. 

 
AUTOMATED SEGMENTATION METHODOLOGY 
 
While classical image processing techniques [13, 14] for segmenting image data have certain 
advantages, there are some limitations of using these techniques as well.  For instance, a classical 
approach to image processing consists of two steps [15]: (1) an enhancement step, in which the 
intensity difference between the features of interest and the background are amplified through 
the application of filters and transforms, and (2) a segmentation step, in which the features of 
interest are extracted from the subsequent image.  As Simmons and colleagues [15] point out, it 
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is unrealistic to expect one segmentation technique to work on the vast number of materials 
microstructures.  Here, we have used the region growing process to segment the γ‘ precipitates.  
Region growing algorithms are widely used in medical imaging applications [e.g., 16-18] and 
should have the ability to even segment γ‘ precipitates in EFTEM images with poor contrast.  

Region growing is a fundamental segmentation technique in image processing [13, 14].  The 
basic procedure for region growing is to start with a ―seed‖ point and grow the region by adding 
neighboring pixels that have properties similar to the seed (e.g., similar intensity).  The region 
grows based on a similarity criteria and stops growth when no more neighboring pixels satisfy 
this criteria.  For example, the growth criterion is often based on the intensity difference between 
the neighboring pixel and the average intensity of the region.  For this example, a threshold 
parameter can be used for the stopping criterion; when the intensity difference for all 
neighboring pixels is above this threshold, growth of the region stops.  This ―naïve‖ method can 
be used to segment the γ‘ precipitates, but with a few disadvantages:   

1. The perimeter of the segmented particle can be very rough due to inherent noise within 
the image.  In reality, though, the surface energy of the γ‘ precipitates will act to 
minimize the region perimeter.  While median or Gaussian filters can be used to reduce 
the noise within the EFTEM images, these methods will also blur the edges of the 
particle, making it difficult to accurately segment the particle boundaries. 

2. The threshold parameter used for a stopping criterion may need to be changed to 
accurately segment different particles.  Additionally, this threshold parameter may not be 
obvious based on visual observation of the region boundary, i.e., the precipitate interface 
has a gradual intensity slope and multiple threshold parameters may appear to 
approximate the region boundary. 

 
We addressed these disadvantages to create a fully automated region growing technique for 
segmenting the γ‘ precipitates.  First, to discourage non-spherical growth with the region 
growing technique, the addition process was modified to include a weighting factor that is a 
function of the local density of region pixels.  To implement this, the intensity difference is 
calculated for each pixel neighboring the region.  However, instead of adding the pixel with the 
closest intensity value, the intensity difference for each pixel is multiplied by a weighting factor 
function and the pixel with the lowest value is added.  In this research, the weighting factor 
function is given by  

( ) ceil
c

n

ew n
e

 
  

 
, 

where n is the number of neighbors belonging to the region in a local neighborhood centered 
around each pixel and the constant c normalizes the weighting function so that the value of 

( ) 1w c  .  The ceiling function is used so that only pixels with a number of neighbors below c 
are adversely weighted.  By multiplying this weighting function by the intensity difference for 
each pixel, this places a lower probability of adding a pixel surrounded by a small number of 
pixels belonging to the region.   
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Second, the stopping criterion of the ―naïve‖ region growing was automated to select a threshold 
parameter for each precipitate in an unsupervised manner.  This is accomplished by 
incrementally increasing the threshold parameter for the region growing algorithm and finding 
the threshold parameter that maximizes a penalty function.  In this work, the penalty function is 
the intensity difference between mean intensities from the ―inner‖ and ―outer‖ regions.  For 
instance, the ―inner‖ region can represent all pixels within the region and the ―outer‖ region can 
represent the bordering pixels just outside the region.  The critical threshold parameter 
maximizes the penalty function and results in the optimum segmentation for the precipitate. 

Figure 3.4.2 illustrates how the automated stopping criterion works for a typical γ‘ precipitate.  
First, Figure 3.4.2(a) shows the region size (pixels) as a function of the threshold parameter 
selected for a seed point within the γ‘ precipitate.  The size of the region increases as the 
threshold parameter increases, as shown in the accompanying images (where the perimeter pixels 
for the segmented γ‘ precipitate is shown in red on the original image).  After a period of fast 
growth to the boundary, further increases in the threshold parameter result in only minor 
increases to the region size.  This illustrates the difficulty with choosing a threshold parameter 
based on visual observation alone.  With only minimal changes to the region size for higher 
threshold parameters, at what threshold is the particle accurately segmented? 

  

(a) (b) 

Figure 3.4.2.  (a) Plot showing the region size as a function of the stopping threshold parameter.  
(b) Plot showing the mean intensity for the region, the area just outside the region, and the 
intensity difference between the two areas as a function of the stopping threshold parameter.  The 
arrow and image correspond to the region with the maximum intensity difference, which is used 
for the automated region growing stopping criterion.   
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To answer this question, Figure 3.4.2(b) shows the mean intensity of the region, the mean 
intensity of the neighboring pixels, and the intensity difference between these two areas as a 
function of the threshold parameter for the same γ‘ precipitate.  Recall that the maximum 
intensity difference (red) is the stopping criterion.  For small threshold parameters, the intensity 
of the area outside the region is approximately equivalent to the intensity of the area inside the 
region, i.e., many of the pixels outside the region belong to the γ‘ precipitate.  The abrupt 
increase in the intensity difference coincides with the region growing near the precipitate 
interface, as can be seen in Figure 3.4.3(a).  Again, recall that the optimum segmentation of the 
γ‘ precipitate is defined as the threshold parameter that yields the maximum intensity difference 
between these two areas, as denoted by the red arrow.  In this automated manner, this routine 
quantitatively delineates the γ‘ precipitate interface based on the intensity gradient across the 
interface.  The image in Figure 3.4.3(b) shows the original image with the perimeter pixels for 
the segmented γ‘ precipitate in red. 

There are several potential parameters that could be used to tune the results of the region 
growing algorithm.  For instance, the calculation of the intensity difference requires a border 
width (pixels) used for calculating the mean intensity of the outer region.  Additionally, the 
calculation of the region‘s mean intensity can use pixels from the entire region or just pixels 
from the outer border of the region.  Moreover, the local density weighting function contains two 
parameters: the constant c and the size of the local neighborhood (m x m).  These parameters will 
be investigated next.  A combination of both visual inspection and quantitative comparison of the 
intensity difference for different segmented particles will be used to find the optimum parameters 
for segmenting secondary and tertiary γ‘ precipitates from EFTEM images.    

 
SEGMENTATION OPTIMIZATION RESULTS 
 
Influence of intensity difference calculation 

 

The first parameter that was investigated was the width of the border just outside the region.  
Multiple gamma prime precipitates were segmented using seven different widths (in pixels): 1, 2, 
3, 4, 5, 6, and 7.  Additionally, the mean intensity of the region was calculated using (i) the entire 
region and (ii) the outer boundary layer of the region.  For these calculations, the values of the 
local density weighting function parameters were c = 9 and m = 5.  Figure 3.4.3 shows an 
example of how these factors influence the particle segmentation.  For the sake of brevity, only 
two different widths are used along with the two methods used for calculating the region mean 
intensity.  The numbers ‗2‘ and ‗7‘ refer to the border width in pixels, while the letters ‗i‘ and ‗ii‘ 
refer to the method for calculating the region mean intensity.  From Figure 3.4.3, a few trends are 
apparent through visual observation and supporting quantitative results: 

1. As the width of the border used for the mean intensity outside the region is increased, 
the segmented precipitate size decreases.  However, this trend is drastically reduced 
or eliminated by using method ‗ii‘ (the inner border) to calculate the region intensity. 

2. For method ‗i‘, which uses the entire region to calculate the inner mean intensity, the 
stopping criterion misses the precipitate interface and allows the region to grow into 
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the surrounding area, as evident in cases 2i and 7i.  Additionally, this method does an 
inadequate job of capturing certain geometric features in the primary γ‘ precipitates 
(shown by red arrows). 

3. For method ‗ii‘, which uses the outer boundary layer of the region to calculate the 
inner mean intensity, the stopping criterion appears to work well. 

 
Based on these findings, method ‗ii‘ is the optimum method for segmentation of the precipitates 
in this study.  The width of the border has less of an influence for this method, so a width of 7 
pixels will be used as the optimum border width parameter.   

 

 
 
Figure 3.4.3.  Images showing how the width of the border used in the mean intensity 
calculation and the choice of method for calculating the region mean intensity influences the 
segmentation of a secondary γ‘ precipitate.  The notation refers to the border width (i.e., the 
numbers 2 and 7 are the border width in pixels) and the two methods for calculating the region 
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mean intensity, i.e., (i) using pixels from the entire region or (ii) just using pixels from the outer 
border of the region (using the same aforementioned border width). 

Influence of local density weighting function parameters 

 

The second parameter investigated was the influence of the local density weighting function.  
The optimum border width and method for calculating the intensity difference determined 
previously was used for this study.  All 30 γ‘ precipitates were segmented using different values 
of m and c, which are listed in Table 3.4.1.  Recall that c normalizes the weighting function, so 
that a density of region pixels equal to or greater than c within the m x m local neighborhood is 
not adversely weighted.  Therefore, the parameter value of m/c = 3/1 does not adversely weight 
any pixels (i.e., the local density weighting function does not influence the region growing 
technique, w(n) = 1 for all pixels).  Table 1 lists the average percentage change (rounded to the 
nearest percent) in area and perimeter for the 15 secondary and 15 tertiary γ‘ precipitates for the 
m/c parameter combinations.  The percentage change in area and perimeter is calculated by 
comparing the statistics for the m/c combination of each precipitate with those of the m/c = 3/1 
combination.  The weighting function parameters have little effect on the precipitate area, but a 
large effect on the perimeter measurement for the γ‘ precipitates.  The precipitate perimeter 
decreases as c is increased for a fixed neighborhood size (m). 

 

Table 3.4.1.  The percent change in the area, perimeter, and equivalent diameter measurements 
for the secondary/tertiary γ‘ precipitates when compared to region growing unbiased by the 
weighting function (m/c = 3/1). 
 

m c Secondary γ‘ 
Area Change 

Tertiary γ‘     
Area Change 

Secondary γ‘ 
Perimeter Change 

Tertiary γ‘  
Perimeter Change 

3 1 Segmentation is unbiased by local density weighting function 
3 2 0  + 1% -8 % -17 % 
3 3 0 + 2% -14 % -26 % 
3 4 - 1% 0 -27 % -39 % 
3 5 -1% + 1% -28 % -40 % 
5 3 0 0 0 -2 % 
5 5 0 0 -2 % -6 % 
5 7 0 0 -5 % -14 % 
5 9 0 + 2% -11 % -25 % 
5 11 -1% 0 -26 % -39 % 
7 5 0 0 0 0 
7 9 0 0 0 -2 % 
7 13 0 0 -2 % -6 % 
7 17 0 + 1% -7 % -17 % 
7 21 0 + 1% -17 % -32 % 
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Figure 3.4.4 illustrates how the m/c parameters influence the segmentation of a tertiary γ‘ 
precipitate.  The perimeter of the segmented region is shown by red pixels on the original 
intensity image.  First, the region starts to grow in a faceted manner as m/c2 approaches 0.5 
(images at the far right in Figure 3.4.4).  This growth is due to the region growing algorithm 
adversely weighting all pixels that do not have at least 50% of their pixels in a local 
neighborhood, i.e., the growth is dominated more by local density of region pixels than the 
intensity of the added pixels.  This type of growth is inadequate for capturing the morphology of 
the precipitates.  Moreover, for low values of c, the region can grow in a fingering manner with a 
jagged interface (i.e., low percentage change in the perimeter lengths in Table 3.4.1).  Therefore, 
a high value of c is ideal for growing a region with a smooth interface (compared to low c 
values) as long as faceted growth is avoided.  From this analysis, the optimum parameters for 
region growing are m/c values of 5/9 or 7/21.    

 

 

 
 
Figure 3.4.4.  Images showing the influence of the local density weighting function parameters 
on the segmentation of a tertiary γ‘ precipitate.  The parameters c and m refer to a normalization 
constant c for the weighting function and the size of the local neighborhood (m x m), 
respectively.   
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Influence of initial seed location 

 

The third area to be investigated is the initial location of the seed point.  In the previous 
examples, the lowest intensity (darkest) pixel within the precipitate was selected as the seed 
point.  Based on the initial segmentation using the lowest intensity pixel, 250 random pixels 
within the precipitate were selected as starting seed points.  The optimum parameters determined 
previously were used for this study.  After all 250 regions were grown, the statistics were 
analyzed.   

Figure 3.4.5 shows all of the random seed points on the original intensity image.  The color of 
the seed points denote the area of the region grown from that seed relative to the area of the 
region grown from the lowest intensity pixel.  Of the 250 regions, 191 of the regions were equal 
to (red), 38 were less than (green), and 21 were greater than (blue) the region grown using the 
lowest intensity seed point.  The spatial location and intensity of the seed point made a difference 
in the final segmented region.  First, seed points selected on the exterior of the precipitate have 
an increased chance of deviating from the segmentation produced using interior seed points.  
This effect is mainly influenced by the intensity difference in the interface region.  For example, 
the region in the lower right of the precipitate in Figure 3.4.5 has a higher mean intensity 
(lighter) than the rest of the precipitate and is closer to the intensity of the surrounding matrix.  
Therefore, many of the seed points within this region had a higher or lower region area than seed 
points selected in the darker regions of the precipitate.  Based on these findings, seed points that 
accentuate the intensity difference between the precipitate and the matrix should be selected for 
the region growing technique, i.e., the darkest pixel in a dark particle or the lightest pixel in a 
light particle.  

 

Figure 3.4.5.  Images showing the intensity image of the tertiary γ‘ precipitate along with the 
250 random seed point locations.  The colors correspond to the size of the segmented region 
relative to the region grown using the lowest intensity (darkest) seed point.   
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Validation 

Using the optimum parameters determined earlier, the initial precipitates were segmented using 
the region growing algorithm.  Figure 3.4.6 shows the original precipitates from Figure 3.4.1 
with the perimeter of the segmented region shown by the red pixels.  For both the secondary and 
tertiary γ‘ precipitates, a visual comparison of the segmented regions with the intensity images 
shows good agreement.  The region growing technique was even adequate at segmenting some 
of the more difficult precipitates, e.g., secondary precipitates with complex morphologies (1, 3, 
4, 5, & 6) and a high intensity contrast within the precipitate (3 & 5) as well as tertiary 
precipitates that had very diffuse interfaces with intensities very near to the surrounding matrix 
(14, 15, & 16).   

 

 

Figure 3.4.6.  Images showing the segmentation of the region growing technique with the 
optimum parameters (border width of 7 pixels, method ‗ii‘, m/c = 5/9) for variations in 
precipitate morphology for primary (1-8) and secondary (9-16) γ‘ precipitates. 
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Additionally, 50 secondary and tertiary γ‘ precipitates were selected to compare the difference 
between manual and automated segmentation.  All of the particles were segmented using the 
region growing technique with the optimum parameters.  The results are shown in Figure 3.4.7, 
which plots the area obtained via manual segmentation against the area obtained via the region 
growing technique.  The 45° line indicates a 1:1 correlation of the areas.  The areas found with 
the region growing technique are, on average, 14% smaller than those same precipitates 
segmented manually (i.e., 7% smaller equivalent diameter).  The inlaid images show several 
secondary and tertiary γ‘ precipitates along with the perimeter of precipitates identified with 
manual (blue) and automated (red) segmentation techniques.  In this instance, manual 
segmentation tended to capture very light intensity differences in the interface region between 
the γ‘ precipitate and the γ matrix.  However, in some cases, this method may actually capture 
some of the γ matrix pixels as well.  Moreover, the results obtained using manual segmentation 
are highly user-dependent.  In contrast to the manual segmentation, the automated region 
growing technique captures the precipitate and its interface based on a quantitative metric (the 
intensity difference) in a reproducible manner.  In the event that the region growing technique 
should be tuned to the manual segmentation, the penalty function can be modified. 

 
 
Figure 3.4.7.  Plot comparing the area of 50 manually segmented precipitates versus the area of 
these same precipitates segmented with the region growing algorithm.  The images show 
examples of some of the secondary and tertiary precipitates with the perimeter of the manually 
and automated precipitates shown in blue and red, respectively. 
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PRECIPITATE STATISTICS RESULTS 
 
The secondary and tertiary γ‘ precipitates can now be segmented using the automated region 
growing technique to extract microstructural statistics from the EFTEM images.  Eight EFTEM 
images from a sample that was slow cooled after aging for 200 hours were examined because of 
the presence of both secondary and tertiary γ‘ precipitates within the microstructure.  Figure 
3.4.8(a) shows an example of one of the original intensity EFTEM images with the perimeters of 
the segmented secondary and tertiary γ‘ precipitates in blue and red, respectively.  A number of 
microstructural statistics (e.g., area, equivalent diameter, perimeter, etc.) can now be extracted 
from the segmented precipitates.  Figure 3.4.8(b) shows an example of the distribution of 
equivalent diameters (nm) for the 656 tertiary γ‘ precipitates segmented from these images.  The 
equivalent diameter for the tertiary γ‘ precipitates was chosen as an example statistic, because 
most of the tertiary γ‘ precipitates are spherical for this processing condition (unlike the 
secondary γ‘ precipitates).  On average, the tertiary γ‘ precipitates have an equivalent diameter of 
26 nm and the distribution is lognormal.  For this microstructure, the secondary γ‘ precipitate 
statistics are not easy obtained since unconnected segments of secondary γ‘ precipitates within 
the EFTEM image can actually be part of the same secondary precipitate.  Several examples of 
this can be observed within Figure 3.4.8(a).  Therefore, a distribution of equivalent diameter for 
the secondary precipitates is not shown here; care should be used when using 2D statistics to 
describe 3D precipitates of complex morphology.  

 
 

(a) (b) 

Figure 3.4.8.  (a) Intensity image with segmented secondary (blue) and tertiary (red) γ‘ 
precipitates using the automated technique.  (b) Histogram assembled from multiple EFTEM 
images, which shows the distribution of equivalent diameters (nm) for 656 tertiary γ‘ 
precipitates.  The average equivalent diameter is 26 nm ± 13 nm. 
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Another characteristic statistic that can be directly tied to the processing history of the 
microstructure is the nearest neighbor distances between precipitates.  Again, the nearest 
neighbor distances between secondary γ‘ precipitates from 2D images are skewed in that they 
may not represent the closest distance between precipitates, but rather the closest distance 
between branches of the same precipitate (see Figure 3.4.8(a)).  Of particular interest is the 
nearest neighbor distance between the secondary and tertiary γ‘ precipitates.  For each tertiary γ‘ 
precipitate, the distance to the nearest secondary γ‘ precipitate was calculated.  Here, the distance 
is calculated as the minimum distance from the segmented boundary of the tertiary precipitate to 
the boundary of the secondary precipitate.  Figure 3.4.9 shows the distribution of nearest 
neighbor distances for the 656 tertiary γ‘ precipitates.  The average nearest neighbor distance 
was 94 nm.  Taking into account the average equivalent diameter of the tertiary γ‘ precipitates, 
the average distance to the centroid of the tertiary precipitate (ideally where nucleation begins) is 
approximately 107 nm. 

 

Figure 3.4.8.  Histogram showing the distribution of nearest neighbor distances (nm) for 656 
tertiary γ‘ precipitates to the nearest secondary γ‘ precipitates.  The average nearest neighbor 
distance is 94 nm ± 39 nm. 
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Interestingly, the distribution also quantitatively captures several effects within the 
microstructure.  First, the low occurrence of tertiary precipitates within 50 nm of the secondary 
precipitates (~8%) reflects that there is a zone around the secondary precipitates in which tertiary 
precipitates do not grow.  This may result from the segregation of elements within the vicinity of 
the boundary [6, 10].  The width of this zone has important implications for Ni-based 
superalloys, because the spatial distribution of γ‘ precipitates impacts the overall mechanical 
properties. 

Second, the highest or extreme value of the nearest neighbor distance (306 nm) may indicate the 
spacing of the secondary γ‘ precipitates.  That is, there are no tertiary γ‘ precipitates greater than 
this distance because within a certain distance from the nearest secondary precipitate (~612 nm) 
the chemical composition is adequate for another secondary γ‘ precipitate to form.  In this 
respect, the extreme value statistics of the nearest neighbor distances can give some insight into 
the maximum spacing of secondary γ‘ precipitates.  In previous work, the distances between 
precipitates have been calculated using the equivalent diameter of the precipitates.  Clearly, 
considering the tortuous morphology of the secondary γ‘ precipitates, the present technique for 
measuring nearest neighbor distances provides a much more accurate estimation of these 
distances, as well.   

The ability to gather statistical information on both secondary and tertiary precipitates provides a 
great tool for the modeling community that has relied heavily on limited analysis of small 
particle populations.  This has been driven by the labor-intensive manual techniques used to 
segment images with difficult intensity gradients across particle boundaries.  The future of 
characterizing γ‘ precipitates in Ni-based superalloys relies not only on better techniques for 
imaging, but also better techniques for segmenting large numbers of γ‘ precipitates in an 
automated manner. 

Conclusions 

In this work, we discuss a computational methodology for automated detection of secondary and 
tertiary γ‘ precipitates in energy filtered transmission electron microscopy (EFTEM) images.  
Several important parameters for the automated region growing technique were investigated 
using a combination of visual inspection and intensity information from the EFTEM images.  
These parameters were related to the method used for calculating the stopping criterion, the local 
density weighting function, and the seed point selection method.  After optimizing these 
parameters, the microstructural statistics obtained from the γ‘ precipitates segmented with the 
automated technique were compared with the same precipitates segmented manually.  On 
average, the results show that the precipitate area (equivalent diameter) obtained using the 
automated technique is approximately 14% (7%) lower than that of the same precipitates 
segmented manually.  The automated region growing technique presented here is suitable for 
detecting secondary and tertiary γ‘ precipitates of complex morphology and varying intensity 
contrast in a reproducible manner. 

This technique was then used to segment the secondary and tertiary γ‘ precipitates from EFTEM 
images of a single crystal nickel-based superalloy that was slow cooled after aging for 200 hours.  
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The segmented precipitates were used to calculate average/extreme microstructural statistics for 
this processing condition.  In addition to calculating the distribution of tertiary precipitate 
equivalent diameters, the distribution of distances from 656 tertiary precipitates to the nearest 
secondary precipitates was calculated.  The extreme values of the distribution shows that the 
majority of tertiary γ‘ precipitates are located greater than 50 nm and less than 300 nm from the 
secondary γ‘ precipitate surfaces for this processing condition.  The significance of this 
technique is its ability to automate segmentation of precipitates in a reproducible manner for 
acquiring microstructure statistics that relate to both processing and properties. 
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3.5.     Multiscale characterization of orthotropic microstructures 

Computer-generated 2D microstructures of varying second phase area fraction (5–30%), aspect 
ratio (1–16) and degree of alignment (where the reinforcement major-axis orientation is random, 
perfectly aligned or semi-aligned) are analyzed via the isotropic and directional forms of the 
computationally efficient multi-scale analysis of area fractions (MSAAF) technique. The impact 
of these microstructure parameters on the representative volume element (RVE) necessary to 
characterize a microstructure is ascertained with variations in isotropic and directional 
homogeneous length scales, derivative quantities of the MSAAF technique. Analysis of these 
results produces empirical expressions for the directional homogeneous length scale as a function 
of area fraction and aspect ratio for the limiting cases of random and ‗perfect‘ second phase 
alignment. Generally, particle alignment is observed to increase the aspect ratio of a 
microstructure‘s RVE—a trend amplified by higher reinforcement aspect ratios and lower area 
fractions. Particle alignment also decreases the absolute size of such an element by reducing the 
directional homogeneous length scales transverse to the axis of alignment. Periodic boundary 
conditions on the perimeter of the synthetic microstructures are used to characterize the error in 
the MSAAF technique via multiple instantiations of the same microstructure, which further 
indicates that the statistical variation in the directional homogeneous length scale (measured by 
the directional MSAAF technique) can be an order of magnitude less than the variation in the 
isotropic homogeneous length scale (measured by the isotropic MSAAF technique). 

INTRODUCTION 

When assessing structure–property relationships for various materials, it is necessary to define a 
representative length scale or volume element for characterization or simulation to avoid 
misleading predictions of macroscopic deformation or transport behavior. Likewise, a model or 
material sample must have sufficient resolution to capture the phenomena of interest. Ideally, a 
component-sized material model or sample should have the highest resolution possible; however, 
practical limitations on experimental and computational resources bound the extent and 
resolution of material models.  
 
The balance between these two often competing needs of extent and resolution has been an 
underlying theme of numerous studies regarding characterization of heterogeneous materials. 
Researchers have focused on developing techniques for determining representative length scales 
for the extent of microstructures based on area fraction or volume fraction [1–4]; such 
approaches have shown sensitivity to microstructure clustering and, in fact, are excellent metrics 
for characterizing this property. The inverse problem of segmenting a microstructure to varying 
length scales (homogenizing) has also been pursued as a route for identifying the critical length 
scale at which macroscopic properties are controlled by shorter length scale features; these 
features are often associated with second phase clustering, its absence, or contribution to 
percolation [5–8]. In fact, recent advances in multi-scale modeling have emerged due to the 
ability to homogenize some regions while considering the local behavior in others; such 
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techniques incorporate various length scales associated with the microstructure and its local 
properties in their formulation [9, 10].  

The correlation between critical length scales in the microstructure and the inherent mechanical 
behavior of heterogeneous microstructures has been examined in numerous computational and 
experimental studies. For example, Spowart [11] predicted that clustering of reinforcement 
particles in an Al–27.5%SiC metal–matrix composite has a noticeable effect on the yield strength 
and an even stronger effect on strain hardening, even though the same level of clustering has 
only a weak effect on the elastic modulus. These results indicate that each aspect of mechanical 
behavior is controlled by a different representative length scale in the microstructure and, 
consequently, that representative volume elements (RVEs) of increasing size were necessary to 
characterize elastic modulus, yield strength and strain-hardening, respectively. Additionally, 
Borb`ely et al [2] measured the local volume fractions in an Al–20%Al2O3 metal–matrix 
composite through 3D microtomography to define a microstructure correlation length and, 
hence, a geometric RVE for this material. Further simulations of elastic and plastic behavior with 
various window sizes showed that the RVE necessary to obtain accurate effective plastic 
properties was approximately twice the size of the RVE needed to obtain equally accurate 
effective elastic properties. Moreover, the influence of second phase distribution on damage 
accumulation and fracture has also been characterized by numerous authors in various materials, 
e.g. [12–14]. In their seminal work on crack deflection around second phase inclusions in a 
brittle matrix, Faber and Evans analyzed and experimentally verified that a clustered second 
phase distribution—as defined by a divergence from a uniform distribution for a given volume 
fraction—significantly increased fracture resistance in ceramic–matrix composites by increasing 
the degree of crack deflection and crack twist [12, 13]. The clustering of particles is associated 
with a critical length scale for fracture. In experiments relating to ductile fracture, Wilks 
analyzed second phase inclusions in a ductile matrix and found that deformation processing 
decreased the size of the RVE in an Al–25%SiC composite; the smaller RVE correlated with (i) 
an increase in interparticle separation due to cluster breakdown, (ii) a larger length scale with 
respect to the ductile fracture process and (iii) a substantial increase in fracture toughness [14]. 
Finite element simulations of microstructure domains reconstructed from experimental images of 
multi-phase materials have also provided insight into plasticity, damage evolution and the 
fracture process [15–19]. In all of these experiments and simulations, the length scale of the 
underlying microstructure plays a commanding role in the mechanical behavior of the material. 

Therefore, it is important to have a consistent methodology for characterizing the critical length 
scales within heterogeneous materials. The focus of this work is the effect of second phase 
anisotropy on critical length scales and the corresponding RVE size. Orthotropic (aligned) 
microstructures are very common in materials where deformation processing has been imposed 
or directional synthesis routes have been pursued [14]. These microstructures constitute a sound 
basis for analyzing limiting bounds on anisotropic length-scale effects. Moreover, such 
microstructures represent a basis for analyzing microstructures with several preferred directions 
of alignment (e.g. precipitated microstructures with preferred orientation relationships) or more 
generalized anisotropy. In this work, we investigate the interaction between length-scale effects 
and second phase orthotropy through applying the isotropic and directional forms of the multi-
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scale analysis of area fractions (MSAAF) technique [1, 20] to computer-generated two-
dimensional microstructure images containing ellipsoidal particles of varying aspect ratio, area 
fraction and propensity for alignment. 
 
Methodology 
 
 Synthetic microstructure conditions 

 

Synthetic microstructures were generated with the factors and factor levels summarized in Table 
3.5.1. The four area fractions (Af) and five aspect ratios (AR) were chosen to give a wide range 
and sufficiently resolved gradient in microstructure characteristics for the subsequent analyses. 
The orientation distributions studied include limiting conditions where all particles are aligned 
vertically (90°), all particles are randomly oriented (random), and an intermediary factor level 
(90° ± 20°) that reflects orientations normally distributed about 90° with a standard deviation of 
20°. In all, 60 distinct synthetic microstructures (conditions) were studied corresponding to the 
permutation of these factors. 
 
Table 3.5.1. The test matrix for these simulations. 

 
 

Synthetic microstructure generation 

 

Each synthetic microstructure condition was generated via a simple procedure, similar to the 
random sequential adsorption (RSA) technique, e.g. [21, 22]. First, particle dimensions (in 
pixels3) were calculated for each aspect ratio along with the number of particles necessary to 
obtain the prescribed area fraction. In order to mitigate any unintended effect of particle size 
distribution, particle size (area) was kept constant through successively higher area fractions; the 
details of this effect will be considered in future work as a subset of the more general interaction 
of microstructure anisotropy and particle polydispersivity. Particle orientation was then 
randomly sampled from the predetermined orientation distribution while the coordinates of the 
particle centroid were determined via a random number generator. The influence of boundary 
effects on particle placement was mitigated by imposing periodic boundary conditions on the 
vertical and horizontal edges of the microstructure domain; particles that extend beyond the 
image bounds were wrapped back onto the opposite side of the image. Analytic criteria were 
used to reject overlapping particles. Particle placement proceeded until the specified area fraction 
                                                 

3 In these synthetic microstructures, absolute length scale is arbitrary; since features dimensioned 
in pixels may seem unphysical, the reader may wish to consider a scale of 1 pixel = 1μm. 
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was obtained. Resulting microstructures contained a minimum of 4000 particles and were of 
4096 × 4096 pixels in extent. 
 
Sample regions from each synthetic microstructure condition as a function of AR and Af are 
depicted in Figure 3.5.1. The general influence of each considered orientation distribution on a 
high area fraction (Af = 30%), high aspect ratio (AR = 16) microstructure is shown in Figure 
3.5.2. Notice in these two figures that particles with similar orientations cluster at higher area 
fractions and aspect ratios. This effect can be correlated with the variation in jamming threshold 
[23] for such microstructures and indicates that the distribution of particle centroids may not be 
truly random, due to the stochastic nature of particle placement.  
 

 
 
Figure 3.5.1. All synthetic microstructure conditions for randomly oriented particles displayed 
as a function of aspect ratio (AR) and area fraction (Af). 
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Figure 3.5.2. The influence of orientation distribution on synthetic microstructures containing 
30% area fraction second phase with a 16:1 aspect ratio. The 512×512 subimages show the 
alignment of particles in the (a) 90°, (b) 90° ± 20° and (c) random orientation distributions. 
 
Multi-scale characterization 
 
Isotropic microstructures. The homogeneous length scale (LH) was developed to determine a 
representative length scale for a particular microstructure based on the variations in area fraction 
of a second phase as a function of length scale (Q) [1]. Qualitatively, LH for a particular 
microstructure is the length scale at which the variation between each sub-region becomes 
statistically indistinguishable from a larger area of material. In other words, LH is the minimum 
length scale necessary to construct a volume element representative of a particular microstructure 
to a given degree of statistical confidence, typically selected to be 99.0% in the isotropic case.  
 
The homogeneous length scale of a real or synthetic microstructure can be quantified by a 
technique termed the multi-scale analysis of area fractions (MSAAF) [1]. In this method, a 
digitized microstructure is re-sampled at various resolutions (corresponding to various length 
scales, Qn) to determine the area fraction of a particular sub-region. Take for example, the first 
column of images in Figure 3.5.3, where an initial microstructure is subdivided into 3 lower 
resolutions/length scales: Q1, Q2, Q3. After subdivision, the effective area fraction (Af) is 
assigned to each sub-region, visually depicted as a gray level in Figure 3.5.3. By using all sub-
regions available at a chosen length scale, an average area fraction and standard deviation (σAf ) 
in area fraction is determined for that Qn. Though the average area fraction over all sub-regions 
for a particular length scale will not change with length scale, the standard deviation over all sub-
regions will. 
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Figure 3.5.3. Evolution of the density area fraction of second phase (depicted by gray level) as a 
function of length scale Q according to the (a) isotropic MSAAF technique, as well as the 
directional technique applied in the (b) vertical and (c) horizontal directions for the synthesized 
20%Af–16AR microstructure. 
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Consequently, the principal result of this technique is a plot depicting the evolution of the 
coefficient of variation (ψ)—the ratio of standard deviation in second phase area fraction to the 
global area fraction, σAf / Af —as a function of Q. Such a plot for the 20%Af–16AR condition is 
depicted in Figure 3.5.4. When this plot decreases to a specified level of confidence (ψ), the 
corresponding Q is termed the homogeneous length scale (LH). Differences in homogeneity 
between isotropic microstructures can be characterized using a value of LH for each 
microstructure at a predetermined level of confidence [1]. For this reason, we use the isotropic 
MSAAF analysis of synthetic microstructures to characterize homogeneity with the 1% 
homogeneous length scale, LH(0.01), i.e. the scale at which the variation in microstructure sub-
region area fraction becomes less than 1% (ψ≤ 0.01). 
 

 
 
Figure 3.5.4. Isotropic and directional MSAAF plots for the synthesized 20%Af–16AR 
microstructure with (a) aligned particles and (b) randomly oriented particles. 
 
Anisotropic microstructures. When studying an area of material that is both anisotropic and 
inhomogeneous, it is useful to logically extend the concept of the homogeneous length scale by 
measuring the directional variation in linear area fraction as a function of length scale to 
compute a directional homogeneous length scale, LHn, where n is an integer index (valued from 
1–3 for a three-dimensional microstructure) denoting a principal particular (orthogonal) direction 
in the material [20]. Only a simple modification to the MSAAF technique is required to obtain 
values of LHn from plane sections of a material. As shown in the second and third columns of 
Figure 3.5.3, rather than subdividing the microstructure into square elements, each line of pixels 
is subdivided into a number of strips for each corresponding length scale of interest (Qn). The 
variation in area fraction of each of these strips used to generate directional MSAAF plots (also 
depicted for the 20%Af–16AR in Figure 3.5.4) to determine the orthogonal 10% (ψ = 0.1) 
homogeneous length scales, LH1 (vertical) and LH2 (horizontal). A value of ψ = 0.1 (i.e. 90% 
confidence) is chosen due to practical limitations on the sizes of images that can typically be 
obtained either experimentally or by simulation. 
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For all synthetic microstructure conditions resulting from the permutations of the factors in Table 
3.5.1, the MSAAF technique and its directional counterpart were used to assess the influence of 
these factors on LH, LH1 and LH2. Since the synthetic microstructure images are periodic, multiple 
instantiations of the same microstructure were sampled (by re-centering the image) to 
characterize the inherent variation in the isotropic and directional MSAAF techniques. To this 
end, 30 distinct instantiations of the same synthetic microstructure were used to calculate error 
values (three standard deviations) at each length scale considered in the MSAAF analysis, as also 
depicted by the error bars in Figure 3.5.4. 
 
Results and discussion 
 
 Isotropic and directional MSAAF results 

 

The isotropic homogeneous length scale, LH(0.01), for different area fractions and aspect ratios 
of aligned particles (90° orientation distribution) is depicted in Figure 3.5.5. First, as expected 
from previous work [14], there is a general decrease in LH with increasing second phase area 
fraction. Second, there is seemingly no monotonic correlation between LH(0.01) and aspect ratio. 
Strongly contributing to this absence of correlation is the broad variation in LH(0.01) between 
different instantiations of each microstructure that often overlaps with adjacent conditions.  
 

 
Figure 3.5.5. Isotropic homogeneous length scale, LH(0.01), as a function of second phase aspect 
ratio and area fraction for aligned (90° orientation distribution) particles; error bars represent the 
3σ deviation from 30 instantiations of each condition. 
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Directional homogeneous length scales LH1(0.1) and LH2(0.1) for the aligned microstructures (90◦ 
orientation distributions) are depicted in Figures 3.5.6(a) and (b), respectively. Here, trends with 
both area fraction and aspect ratio are apparent. Again, the inverse relationship between 
homogeneous length scale and area fraction is clear. However, the directional length scale along 
the axis of alignment (LH1) increases with aspect ratio while the opposite trend is observed in the 
transverse (LH2) direction.  
 

 
 
Figure 3.5.6. Directional homogeneous length scales, (a) LH1(0.1) and (b) LH2(0.1), as a function 
of second phase aspect ratio and area fraction for aligned (90° orientation distribution) particles. 
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Comparing Figures 3.5.5 and 6 clearly indicates that for the isotropic MSAAF technique, error in 
LH measurement can be significant when comparing orthotropic microstructures. This is due in 
part to the (m − 1) character of the standard deviation in area fraction used to compute _, where 
m is the number of sub-regions; at large length scales, this deviation can influence the 
measurement of LH. In contrast, the variation at each length scale resulting from the directional 
MSAAF technique is quite small since even at the largest length scale there are still 4096 sub-
regions; the different length scales more accurately capture the contribution of orthotropy in the 
microstructure. For this reason, the coefficient of variation terms that used only 1 or 4 sub-
regions were dropped when calculating the isotropic LH to avoid including spurious values of LH. 
 
The effect of orientation distribution on the directional homogeneous length scales as a function 
of aspect ratio for the synthetic microstructures containing 30% Af second phase is captured in 
Figure 3.5.7. As expected, there is no difference in directional length scales for the random 
condition. However, the increasing propensity for second phase alignment increases the 
separation of these orthogonal length scales by increasing LH1 and decreasing LH2. This trend is 
characteristic of the other second phase area fractions as well.  
 

 
 
Figure 3.5.7. Directional homogeneous length scales, LH1(0.1) and LH2(0.1), as a function of 
second phase aspect ratio for random, semi-aligned and aligned (90° orientation distribution) 
particles in a 30%Af microstructure. 
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Model for homogeneous length scales in orthotropic microstructure 

 

MSAAF data have previously been fit [1] to an equation of the form 
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where α is a geometric factor related to particle size and area fraction, ξ is the slope of the long 
length-scale portion of the MSAAF plot and Q* is the discretized length scale (in pixels) [1]. In 
order to understand the effect of microstructure factors on homogeneous length scales, least 
squares fits to Equation (1) were used to characterize the behavior of α and ξ for each synthetic 
microstructure condition. During such fits, it was observed that while Q* = Q fits MSAAF 
curves where α is small, large α values require Q* = Q−1. This is simply due to the discretized 
nature of the image, i.e. the lower limit on Q is 1 pixel. This modification reflects that at a length 
scale of Q = 1, the coefficient of variation is entirely dependent on second phase area fraction 
(i.e.,     fff AAA  1 .  Use of this transformation for any α fully reconciles the short 

and long length-scale MSAAF behaviors originally proposed by Spowart et al [1] and greatly 
improves the fit of Equation (1) to MSAAF results, suggesting that the relationship  
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is more universal for discrete data than Equation (1), particularly at short length scales.  
 
The solid lines for the directional MSAAF plots shown in Figure 3.5.4 are typical of fitting 
Equation (2) to MSAAF results for all synthetic microstructure. Over all conditions ξisotropic ≈ −1 
and ξdirectional ≈ −0.5, indicating that ξ is insensitive to all considered microstructure factors, as 
well as the method (isotropic or directional) used for characterizing homogeneity. On the other 
hand, α varied significantly with second phase area fraction, aspect ratio and degree of 
alignment. Moreover, it has previously been shown [1, 11] that ξ can vary significantly with 
degree of clustering, although this was not studied in the present effort.  Figure 3.5.8 shows the 
evolution of α as a function of second phase area fraction and aspect ratio for the (a) random 
orientation distribution and the ‗perfectly‘ aligned orientation distribution in the (b) LH1 and (c) 
LH2 directions. 
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Figure 3.5.8. Evolution of the parameter α as a function of second phase area fraction and aspect 
ratio for (a) random and ‗perfectly‘ aligned (90°) orientation distributions in the (b) LH1(0.1) and 
(c) LH2(0.1) directions. 
 
 
 
Inspecting the results for the random, partially aligned (90°±20°) and ‗perfectly‘ aligned (90°) 
conditions showed that α obeys a relationship of the form  
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where cn are constants that are tabulated in Table 3.5.2 for each orientation distribution 
considered in this study. The quality of the fit from these coefficients to the calculated α values is 
depicted in Figures 3.5.8(a)–(c) by the solid lines. 
 
 
 
Table 3.5.2. Coefficients for the model of Equation (3) for each directional homogeneous length 
scale, (a) LH1 and (b) LH2 as a function of second phase aspect ratio and area fraction for aligned 
(90° orientation distribution) particles. 
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Implications for RVEs size in orthotropic materials 

 
If it is assumed that ξ = −0.5, then Equation (2) can be rearranged such that LH, LH1 and LH2 can 
be characterized by a relationship of the form 
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where the index n of Equation (4) is 1, 2 or 3 depending on the principal direction in the 
microstructure. Such an expression can then be used to estimate the size of a RVE for the 
considered orthotropic microstructures as a function of the second phase volume fraction (Vf), 
aspect ratio, and desired level of confidence (ψ), i.e.  
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If symmetry is maintained about the axis of alignment (the 1 direction) and the second phase is 
needle-shaped not disc-shaped, then α2 = α3 and the size of the RVE necessary to characterize the 
three-dimensional variants of the orthotropic microstructures can be determined as a function of 
the factors considered in this work. To that end, Figures 3.5.9(a)–(c) capture the effect of second 
phase volume fraction and aspect ratio on RVE size for the (a) random, (b) 90° ± 20° and (c) 
‗perfectly‘ (90°) aligned orientation distributions. 
 
 

 
 
Figure 3.5.9. Effect of second phase area volume fraction (Vf) and aspect ratio (AR) on two-
dimensional RVE size for the (a) random, (b) 90°±20° and (c) ‗perfectly‘ (90°) aligned 
orientation distributions. 
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Discussion 
 
There are a few caveats of the 2D synthetic microstructures generated in this work. The random 
placement of particles may not be entirely representative of extrusion or directional synthesis 
processing. For example, the nearest neighbor separation could contract during extrusion in 
addition to second phase alignment or there could be alignment of second phase centroids in 
addition to the orientation of the principal axis. In this respect, the methodology for generating 
synthetic microstructures could be altered to better represent the microstructure within a specific 
material processed in a specific manner, i.e. two-point correlation functions of experimental 
microstructures could be used to generate statistically similar synthetic microstructures [24–30]. 
Additionally, there are many aspects of microstructures in real materials that have not been 
explored in the current work, i.e. particle morphology (in addition to aspect ratio), particle size 
distribution and particle clustering (spatial distribution), to name a few. We leave these 
microstructure-specific aspects of second phase particles for future work. 
 
Nevertheless, by controlling the second phase particle alignment, aspect ratio, and area fraction 
when generating the 2D periodic synthetic microstructures, the following work illuminates how 
the computationally efficient MSAAF technique can be used for understanding the inherent 
alignment of second phase particles in experimental images. The two microstructure parameters, 
α and ξ, used for fitting Equation (2) represent the evolution of the variation in area fraction as a 
function of length scale. The directional and homogeneous length scales from the MSAAF 
technique signify a quantitative metric for characterizing the representative length scale or 
volume element for a given microstructure. The significance of this work is that the analysis of 
experimental images with the MSAAF technique can be compared and interpreted based on the 
results of various synthetic microstructures examined in this work. 
 
Future work will encompass generating 3D periodic synthetic microstructures with second phase 
particles of known sizes, aspect ratios, and orientations; analyzing 2D orthogonal slices may help 
our understanding of how quantitative information informed from 2D orthogonal slices relate to 
the known 3D structure. This will test the validity of stereological assumptions often employed 
for relating 2D microstructural information 3D volumes [31]. Additional work will concentrate 
on generating synthetic microstructures with various degrees of particle clustering to improve 
our understanding of how clustering impacts the representative length scales of realistic 
microstructures. Also, as shown in this work, the directional length scale indicates alignment (or 
non-alignment) in a particular direction; by applying the directional MSAAF technique along 
multiple orientations, the associated alignment texture of second phase particles within a 
microstructure image can be easily ascertained. 
 
Summary 
 
In this work, synthetic two-phase microstructures with known area fractions, aspect ratios and 
orientations of second phase particles were generated to probe the effects of orthotropy on 
metrics used to measure representative length scales: the isotropic and directional homogeneous 
length scales calculated from the MSAAF technique. The prime result of this work is a template 
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for determining the representative length scale (and volume) of microstructure in a given 2D 
section as a function of specific microstructure factors (area fraction, aspect ratio, alignment 
propensity). Ancillary results of this work are:  
 

(i) The calculated standard deviation (error) from 30 instantiations of each periodic 
synthetic microstructure is substantially lower for directional homogeneous length 
scales when compared with the isotropic homogeneous length scale. This is 
attributable to the number of constituent subdivisions of an image at larger length 
scales. Therefore, to avoid this deviation the extent of the domain must be large 
compared with the representative length scale being measured; this is especially 
important for the isotropic MSAAF technique. 

 
(ii) The directional MSAAF technique is useful for characterizing the relative 

alignment of second phase particles in the synthetic microstructures generated. 
The deviation between the directional length scales in two orthogonal directions 
increases as a function of particle alignment and aspect ratio. The homogeneous 
and directional length scales increase with decreasing area fraction of particles. 

 
This work shows how the isotropic and directional MSAAF techniques can help quantitatively 
characterize orthotropic microstructures with second phase particles of varying alignments. 
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3.6.     Setup of a miniature specimen apparatus 

The motivation for this work is that the smaller section thicknesses in turbine blades may cause 
different creep properties than test specimens machined from thicker slabs.  This requires a test 
apparatus that can perform creep and fatigue experiments at temperatures up to 1200°C.  A 
number of subtasks need to be performed to setup a test machine capable of testing miniature 
specimens. 
 
Completed Subtasks 

1. Initial setup 
a. Hydraulic lines were installed for the final location of the apparatus. 
b. The MTS 858 Material Testing System with MTS Model 359 load unit was 

ordered for this particular set of experiments.  A table with anti-vibration pads for 
the legs was used to support the test apparatus.     

2. Specimen grips 
a. Grips.  Grips were machined from a Ni-based superalloy material. 
b. Pins.  The specimen will be pin loaded with two pins on both ends.  The pins may 

be exposed to high temperatures as well, so these were also machined from a Ni-
based superalloy material. 

c. Grip cooling.  A copper block was machined to cool the grips with cooling water.  
The block is in two halves and can be adjusted to attach to the grips at any 
location.    

3. Machine alignment 
a. Instrumented alignment specimen.  Aluminum alignment specimen with a 

longer and wider gauge section was machined.  The width of this specimen was 
increased to accommodate a sufficient number of strain gauges.  The length of the 
specimen was increased following finite element modeling of the alignment 
specimen design.  Small strain gauges were attached to an alignment specimen. 

b. Anti-rotation device.  An anti-rotation device was machined and attached to the 
MTS machine prior to alignment.  This device attaches to a precision machined 
rod and the actuator.  The device is locked to the actuator, but is allowed to slide 
along the rod, keeping the actuator from any lateral movements or rotations that 
would adversely affect alignment. 

4. Temperature Measurement/Control 
a. Heating Unit.  The Ameritherm HotShot (2kW) induction heating unit is being 

used with a coil design complemented by a flux concentrator.  A stage with x-y 
translation has also been attached to the induction heating unit to allow for 
repeatable positioning of the induction coils with respect to the specimen.   

b. Heating Unit Coil.  A butterfly coil design with 3/16‖ OD copper tubing and the 
flux concentrator material locally heated the specimen to >1200°C while the grip 
material stayed at ~500°C.   
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c. Pyrometer.   A one-color pyrometer is currently being used for temperature 
measurement of the specimens during coil design.   

d. Temperature calibration.  S-type thermocouples were welded to a test specimen 
to measure the temperature profile across the gage length.  Minor fluctuations in 
temperature (on the order of 5-25°C across the gage length) within the hot zone of 
the induction coil still need to be fixed.   

e. Temperature feedback loop.  The one-color pyrometer was linked with process 
controller for controlling the temperature output of the induction heating unit.  A 
process controller that accepts, controls, and retransmits a 4-20 mA signal was 
installed.  The loop works well, but relies on the temperature from the pyrometer 
being the correct temperature. 

5. Strain Measurement/Control 
a. Non-contact interferometry.   Dantec Dynamics was contacted about an on-site 

demonstration of their Q-300 speckle pattern interferometer on our test apparatus.  
This would allow non-contact measurement of the 3-dimensional strains on a 
sample area of 1x1 mm2 and larger.  Unfortunately, following a full-field 
displacement meeting on Feb 28th, it was decided that the capability of Dantec‘s 
systems and other ―state of the art‖ image correlation systems isn‘t sufficient for 
our specimen size and the high temperatures. 

b. Extensometers.  High temperature extensometers can contact the specimen from 
the side for strain measurement.  The current butterfly design of the coils creates 
an unobstructed face for the extensometer to contact the gage section of the 
specimen.  The LVDT extensometers need to be calibrated.  

6. Stress Measurement 
a. Load cell.  The load cell for the unit was calibrated. 

7. Specimen preparation. 
a. Bulk slab specimens.  The miniature specimens for testing were machined from a 

bulk slab that was oriented such that the [001] dendritic growth direction is along 
the length of the specimen and the lateral faces of the specimen are the [010] and 
[100] directions.  The directions were measured using the Laue x-ray with the 
help of Jay Tiley and Paul Shade. 
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(a) (b) 

Figure 3.6.1.  Images of the butterfly coil design locally heating the test specimen.  Figure 
3.6.1(b) shows that while this coil design heats the specimen efficiently, it also heats the grips 
over time.   

 

Figure 3.6.2.  Images of the butterfly coil design with the flux concentrator locally heating a test 
specimen with five thermocouples instrumented along the gage section.   
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Figure 3.6.3.  Graph showing a comparison of various coil designs.  The biggest increase in 
performance was due to the addition of the flux concentrator to the coil.   
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Figure 3.6.4.  Images of the miniature test apparatus with one-color pyrometer (left, blue), 
induction heating unit and coils, grips, anti-rotation device, and copper cooling blocks for the 
grips.  In the lower right hand side, the brackets for the extensometer is also visible. 
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Figure 3.6.5.  CAD drawing for the final specimen design (David Maxwell). 
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Figure 3.6.6.  CAD drawing for the placement of the strain gauges on the alignment specimen 
(Daniel Knapke). 
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Figure 3.6.7.  CAD drawing for the flux concentrator (Fluxtrol). 

 

4 Conclusions 

This report focuses on two research areas critical to better understanding high temperature 
mechanical behavior in single crystal nickel-based superalloys, which are commonly used 
materials for turbine blades that lie within the hot section (1200°C) of the engine.  The first 
research area detailed in this report was the high temperature mechanical properties (creep, 
fatigue) of single crystal nickel-based superalloys.  The second research area detailed in this 
report was the detection and characterization of microstructural features that may be important 
for models that aim to describe how damage progresses in single crystal Ni-based superalloys.  
The ability to use the information stemming from these research areas in concurrent multiscale 
damage mechanics models may greatly enhance the engineering of single crystal Ni-based 
superalloys.   




